Skip to main content

Advertisement

Log in

Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The spinocerebellar ataxia type 17 (SCA17) is characterized by cerebellar ataxia, dementia, and involuntary movements, including chorea and dystonia. In addition, psychiatric symptoms, pyramidal signs, and rigidity are common. MRI shows variable atrophy of the cerebrum, brainstem, and cerebellum. The autosomal dominantly inherited progressive neurodegenerative disorder is caused by an expanded CAA/CAG repeat coding for glutamine. Alleles of the normal range carry 25 to 42 glutamine residues, disease causing alleles 43 to 63. Alleles with 43 to 48 glutamine codons may be associated with incomplete penetrance. The mean age of onset is about 30 years for individuals with full-penetrance alleles, but ranges from three to 55 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4:2–6.

    Article  CAS  Google Scholar 

  2. Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, Fetoni V, Mariotti C, Migone N, Di Donato S, Taroni F. Molecular genetics of hereditary spinocerebellar ataxia: Mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol. 2004;61:727–33.

    Article  Google Scholar 

  3. Craig K, Keers SM, Walls TJ, Curtis A, Chinnery PF. Minimum prevalence of spinocerebellar ataxia 17 in the north east of England. J Neurol Sci. 2005;239:105–9.

    Article  CAS  Google Scholar 

  4. Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: A new polyglutamine disease? Hum Mol Genet. 1999;8:2047–53.

    Article  CAS  Google Scholar 

  5. Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Molec Genet. 2001;10:1441–8.

    Article  CAS  Google Scholar 

  6. Zühlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, Riess O, Klein C, Schwinger E. Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of interited ataxia. Eur J Hum Genet. 2001;9:160–4.

    Article  Google Scholar 

  7. Zühlke C, Gehlken U, Hellenbroich Y, Schwinger E, Bürk K. Phenotypical variability of expanded alleles in the TATA-binding protein gene. Reduced penetrance in SCA17? J Neurol. 2003;250:161–3.

    Article  Google Scholar 

  8. Zühlke C, Spranger M, Spranger S, Voigt R, Lanz M, Gehlken U, Hinrichs F, Schwinger E. SCA17 caused by homozygous repeat expansion in TBP due to partial isodisomy 6. Eur J Hum Genet. 2003;11:629–32.

    Article  Google Scholar 

  9. Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, Dermaut B, Van Broeckhoven C, Durr A, Brice A. CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain. 2001;124:939–1947.

    Article  Google Scholar 

  10. De Michele G, Maltecca F, Carella M, Volpe G, Orio M, De Falco A, Gombia S, Servadio A, Casari G, Filla A, Bruni A. Dementia, ataxia, extrapyramidal features, and epilepsy: Phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol Sci. 2003;24:166–7.

    Article  Google Scholar 

  11. Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, Bruni A, Cocozza S, Casari G, Servadio A, De Michele G. Intergenerational instability and marked anticipation in SCA-17. Neurology. 2003;61:1441–3.

    Article  CAS  Google Scholar 

  12. Stevanin G, Fujigasaki H, Lebre AS, Camuzat A, Jeannequin C, Dode C, Takahashi J, San C, Bellance R, Brice A, Dürr A. Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain. 2003;126:1599–603.

    Article  Google Scholar 

  13. Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schöls L, Riess O. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol. 2003;54:367–75.

    Article  Google Scholar 

  14. Toyoshima Y, Yamada M, Onodera O, Shimohata M, Inenaga C, Fujita N, Morita M, Tsuji S, Takahashi H. SCA17 homozygote showing Huntington’s disease-like phenotype. Ann Neurol. 2004;55:281–6.

    Article  CAS  Google Scholar 

  15. Günther P, Storch A, Schwarz J, Sabri O, Steinbach P, Wagner A, Hesse S. Basal ganglia involvement of a patient with SCA 17—a new form of autosomal dominant spinocerebellar ataxia. J Neurol. 2004;251:896–7.

    Article  Google Scholar 

  16. Hagenah JM, Zühlke C, Hellenbroich Y, Heide W, Klein C. Focal dystonia as presenting sign of SCA17. Mov Dis. 2004;19:217–20.

    Article  Google Scholar 

  17. Bruni AC, Takahashi-Fujigasaki J, Maltecca F, Foncin JF, Servadio A, Casari G, D’Adamo P, Maletta R, Curcio SA, De Michele G, Filla A, El Hachimi KH, Duyckaerts C. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch Neurol. 2004;61:1314–20.

    Article  Google Scholar 

  18. Loy CT, Sweeney MG, Davis MB, Wills AJ, Sawle GV, Lees AJ, Tabrizi SJ. Spinocerebellar ataxia type 17: Extension of phenotype with putaminal rim hyperintensity on magnetic resonance imaging. Mov Disord. 2005;20:1521–3.

    Article  Google Scholar 

  19. Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, Kock N, Steinlechner S, Nagel M, Zühlke C, Nitschke MF, Brockmann K, Klein C, Rolfs A, Binkofski F. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 2006;129:2341–52.

    Article  CAS  Google Scholar 

  20. Minnerop M, Joe A, Lutz M, Bauer P, Urbach H, Helmstaedter C, Reinhardt M, Klockgether T, Wüllner U. Putamen dopamine transporter and glucose metabolism are reduced in SCA17. Ann Neurol. 2005;58:490–1.

    Article  CAS  Google Scholar 

  21. Salvatore E, Varrone A, Sansone V, Nolano M, Bruni AC, De Rosa A, Santoro L, Pappata S, Filla A, De Michele G. Characterization of nigrostriatal dysfunction in spinocerebellar ataxia 17. Mov Disord. 2006;21:872–5.

    Article  Google Scholar 

  22. Bauer P, Laccone F, Rolfs A, Wüllner U, Bösch S, Peters H, Liebscher S, Scheible M, Epplen JT, Weber BH, Holinski-Feder E, Weirich-Schwaiger H, Morris-Rosendahl DJ, Andrich J, Riess O. Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington’s disease-like phenotype. J Med Genet. 2004;41:230–2.

    Article  CAS  Google Scholar 

  23. Bürk K, Abele M, Fetter M, Dichgans J, Skalaj M, Laccone F, Didierjan O, Brice A, Klockgether T. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119:1497–505.

    Article  Google Scholar 

  24. Hellenbroich Y, Bubel S, Pawlack H, Opitz S, Vieregge P, Schwinger E, Zühlke C. Refinement of the spinocerebellar ataxia type 4 locus in a large German family and exclusion of CAG repeat expansions in this region. J Neurol. 2003;250:668–71.

    Article  CAS  Google Scholar 

  25. Bürk K, Zühlke C, König IR, Ziegler A, Schwinger E, Globas C, Dichgans J, Hellenbroich Y. Spinocerebellar ataxia type 5 (SCA5): Clinical and molecular genetic features of a german kindred. Neurology. 2004;62:327–9.

    Article  Google Scholar 

  26. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet. 1997;15:62–9.

    Article  CAS  Google Scholar 

  27. Imbert G, Trottier Y, Beckmann J, Mandel JL. The gene for the TATA binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27. Genomics. 1994;21:667–8.

    Article  CAS  Google Scholar 

  28. Polymeropoulos MH, Rath DS, Xiao H, Merril CR. Trinucleotide repeat polymorphism at the human transcription factor IID gene. Nucleic Acids Res. 1991;19:4307.

    Article  CAS  Google Scholar 

  29. Gostout B, Liu Q, Sommer SS. ‘Cryptic’ repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am J Hum Genet. 1993;52:1181–90.

    Google Scholar 

  30. Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januario C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J. Trinucleotide repeats in 202 families with ataxia: A small expanded (CAG)n allele at the SCA17 locus. Arch Neurol. 2002;59:623–9.

    Article  CAS  Google Scholar 

  31. Juvonen V, Hietala M, Kairisto V, Savontaus ML. The occurrence of dominant spinocerebellar ataxias among 251 Finnish ataxia patients and the role of predisposing large normal alleles in a genetically isolated population. Acta Neurol Scand. 2005;111:154–62.

    Article  CAS  Google Scholar 

  32. Oda M, Maruyama H, Komure O, Morino H, Terasawa H, Izumi Y, Imamura T, Yasuda M, Ichikawa K, Ogawa M, Matsumoto M, Kawakami H. Possible reduced penetrance of expansion of 44 to 47 CAG/CAA repeats in the TATA-binding protein gene in spinocerebellar ataxia type 17. Arch Neurol. 2004;61:209–12.

    Article  Google Scholar 

  33. Zühlke C, Dalski A, Schwinger E, Finckh U. Spinocerebellar ataxia type 17: Report of a family with reduced penetrance of an unstable Gln49 TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes. BMC Med Genet. 2005;6:27.

    Article  Google Scholar 

  34. Shatunov A, Fridman EA, Pagan FI, Lieb J, Singleton A, Hallett M, Goldfarb LG. Small de novo duplication in the repeat region of the TATA-box-binding protein gene manifest with a phenotype similar to variant Creutzfeldt-Jakob disease. Clin Genet. 2004;66:496–501.

    Article  CAS  Google Scholar 

  35. Goldfarb LG, Vasconcelos O, Platonov FA, Lunkes A, Kipnis V, Kononova S, Chabrashvili T, Vladimirtsev VA, Alexeev VP, Gajdusek DC. Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1. Ann Neurol. 1996;39:500–6.

    Article  CAS  Google Scholar 

  36. Choudhry S, Mukerji M, Srivastava AK, Jain S, Brahmachari SK. CAG repeat instability at SCA2 locus: Anchoring CAA interruptions and linked single nucleotide polymorphisms. Hum Mol Genet. 2001;10:2437–46.

    Article  CAS  Google Scholar 

  37. Zühlke C, Dalski A, Hellenbroich Y, Bubel S, Schwinger E, Bürk K. Spinocerebellar ataxia type 1 (SCA1): Phenotype-genotype correlation studies in intermediate alleles. Eur J Hum Genet. 2002;10:204–9.

    Article  Google Scholar 

  38. Andrew SE, Goldberg YP, Hayden MR. Rethinking genotype and phenotype correlations in polyglutamine expansion disorders. Hum Mol Genet. 1997;6:2005–10.

    Article  CAS  Google Scholar 

  39. McNeil SM, Novelletto A, Srinidhi J, Barnes G, Kornbluth I, Altherr MR, Wasmuth JJ, Gusella JF, MacDonald ME, Myers RH. Reduced penetrance of the Huntington’s disease mutation. Hum Mol Genet. 1997;6:775–9.

    Article  CAS  Google Scholar 

  40. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8:221–8.

    Article  CAS  Google Scholar 

  41. van der Sluijs BM, van Engelen BG, Hoefsloot LH. Oculopharyngeal muscular dystrophy (OPMD) due to a small duplication in the PABPN1 gene. Hum Mutat. 2003;21:553.

    Article  Google Scholar 

  42. Takiyama Y, Igarashi S, Rogaeva EA, Endo K, Rogaev EI, Tanaka H, Sherrington R, Sanpei K, Liang Y, Saito M. Evidence for inter-generational instability in the CAG repeat in the MJD1 gene and for conserved haplotypes at flanking markers amongst Japanese and caucasian subjects with Machado-Joseph disease. Hum Mol Genet. 1995;4:1137–46.

    Article  CAS  Google Scholar 

  43. Lerer I, Merims D, Abeliovich D, Zlotogora J, Gadoth N. Machado-Joseph Disease: Correlation between clinical features, the CAG repeat length and homozygosity of the mutation. Eur J Hum Genet. 1996;4:3–7.

    Article  CAS  Google Scholar 

  44. Wexler NS, Young AB, Tanzi RE, Travers H, Starosta-Rubinstein S, Penney JB, Snodgrass SR, Shoulson I, Gomez F, Ramos Arroyo MA. Homozygotes in Huntington’s disease. Nature. 1997;326:194–7.

    Article  Google Scholar 

  45. Polo JM, Calleja J, Combarros O, Berciano J. Hereditary ataxias and paraplegias in Cantabria, Spain. An epidemiological and clinical study. Brain. 1991;114:855–66.

    Article  Google Scholar 

  46. Maruyama H, Izumi Y, Morino H, Oda M, Toji H, Nakamura S, Kawakami H. Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: Astudy of 1,286 Japanese patients. Am J Hum Genet. 2002;114:578–83.

    Article  Google Scholar 

  47. Wu YR, Fung HC, Lee-Chen GJ, Gwinn-Hardy K, Ro LS, Chen ST, Hsieh-Li HM, Lin HY, Lin CY, Li SN, Chen CM. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm. 2005;112:539–46.

    Article  CAS  Google Scholar 

  48. Hoffmann A, Sinn E, Yamamoto T, Wang J, Roy A, Horisoshi M, Roeder RG. Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature. 1990;346:387–90.

    Article  CAS  Google Scholar 

  49. Kao CC, Lieberman PM, Schmidt MC, Zhou Q, Pei R, Berk AJ. Cloning of a transcriptionally active human TATA binding factor. Science. 1990;248:1646–50.

    Article  CAS  Google Scholar 

  50. Peterson MG, Tanese N, Pugh BF, Tjian R. Functional domains and upstream activation properties of cloned human TATA binding protein. Science. 1990;248:1625–30.

    Article  CAS  Google Scholar 

  51. Purrello M, Pietro CD, Mirabile E, Rapisarda A, Rimini R, Tine A, Pavone L, Motta S, Grzeschik KH, Sichel G. Physical mapping at 6q27 of the locus for the TATA box-binding protein, the DNA-binding subunit of TFIID and a component of SL1 and TFIIIB, strongly suggests that it is single copy in the human genome. Genomics. 1994;22:94–100.

    Article  CAS  Google Scholar 

  52. Veenstra GJC, Weeks DL, Wolffe AP. Distinct roles for TBP and TBP-like factor in early embryonic gene transcription in Xenopus. Science. 2000;290:2312–4.

    Article  CAS  Google Scholar 

  53. Martianov I, Viville S, Davidson I. RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science. 2002;298:1036–9.

    Article  CAS  Google Scholar 

  54. Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L, Agid Y, Brice A, Mandel JL. Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature. 1995;378:403–6.

    Article  CAS  Google Scholar 

  55. van Roon-Mom WM, Reid SJ, Jones AL, MacDonald ME, Faull RL, Snell RG. Insoluble TATA-binding protein accumulation in Huntington’s disease cortex. Brain Res Mol Brain Res. 2002;109:1–10.

    Article  Google Scholar 

  56. Reid SJ, van Roon-Mom WM, Wood PC, Rees MI, Owen MJ, Faull RL, Dragunow M, Snell RG. TBP, a polyglutamine tract containing protein, accumulates in Alzheimer’s disease. Brain Res Mol Brain Res. 2004;125:120–8.

    Article  CAS  Google Scholar 

  57. Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang YC, Li SH, Hwang JC, Fang K, Hsieh-Li HM, Li ML, Tung LC, Su MT, Lu KT, Lee-Chen GJ. Genetic testing in spinocerebellar ataxia in Taiwan: Expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson’s disease. Clin Genet. 2004;65: 209–214.

    Article  CAS  Google Scholar 

  58. Rubinsztein DC, Leggo J, Crow TJ, DeLisi LE, Walsh C, Jain S, Paykel ES. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different human populations and in patients with schizophrenia and bipolar affective disorder. Am J Hum Genet. 1996;67:495–8.

    Article  CAS  Google Scholar 

  59. Jones AL, Middle F, Guy C, Spurlock G, Cairns NJ, McGuffin P, Craddock N, Owen M, O’Donovan MC. No evidence for expanded polyglutamine sequences in bipolar disorder and schizophrenia. Mol Psychiatry. 1997;2:478–82.

    Article  CAS  Google Scholar 

  60. WFN&IHA, Guidelines for the molecular genetics predictive test in Huntington’s disease. Med Genet. 1994;31:555–9.

    Google Scholar 

  61. Guarente L, Bermingham-McDonogh O. Conservation and evolution of transcriptional mechanisms in eukaryotes. Trends Genet. 1992;8:27–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Zühlke PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zühlke, C., Bürk, K. Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein. Cerebellum 6, 300–307 (2007). https://doi.org/10.1080/14734220601136177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220601136177

Key words

Navigation