Skip to main content
Log in

Regulating filopodial dynamics through actin-depolymerizing factor/cofilin

  • Special Review Based on a Presentation made at the 16th International Congress of the IFAA
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The regulation of filopodial dynamics by neurotrophins and other guidance cues plays an integral role in growth cone pathfinding. Filopodia are F-actin-based structures that explore the local environment, generate forces and play a role in growth cone translocation. Here, we review recent research showing that the actin-depolymerizing factor (ADF)/cofilin family of proteins mediates changes in the length and number of growth cone filopodia in response to brain-derived neurotrophic factor (BDNF). Although inhibition of myosin contractility also causes filopodial elongation, the elongation in response to BDNF does not occur through a myosin-dependent pathway. Active ADF/cofilin increases the rate of cycling between the monomer and polymer pools and is critical for the BDNF-induced changes. Thus, we discuss potential mechanisms by which ADF/cofilin may affect filopodial initiation and length change via its effects on F-actin dynamics in light of past research on actin and myosin function in growth cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Amano M, Ito M, Kimura K et al. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271, 20 246–9.

    Google Scholar 

  • Arber S, Barbayannis FA, Hanser H et al. (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM- kinase. Nature 393, 805–9.

    Article  CAS  PubMed  Google Scholar 

  • Bamburg JR, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 9, 364–70.

    Article  CAS  PubMed  Google Scholar 

  • Bray D, Chapman K (1985) Analysis of microspike movements on the neuronal growth cone. J Neurosci 5, 3204–13.

    CAS  PubMed  Google Scholar 

  • Bridgman PC (2002) Growth cones contain myosin II bipolar filament arrays. Cell Motil Cytoskeleton 52, 91–6.

    Article  CAS  PubMed  Google Scholar 

  • Bridgman PC, Dailey ME (1989) The organization of myosin and actin in rapid frozen nerve growth cones. J Cell Biol 108, 95–109.

    Article  CAS  PubMed  Google Scholar 

  • Bridgman PC, Dave S, Asnes CF, Tullio AN, Adelstein RS (2001) Myosin IIB is required for growth cone motility. J Neurosci 21, 6159–69.

    CAS  PubMed  Google Scholar 

  • Brown J, Bridgman PC (2003a) Role of myosin II in axon outgrowth. J Histochem Cytochem 51, 421–8.

    CAS  PubMed  Google Scholar 

  • Brown ME, Bridgman PC (2003b) Retrograde flow rate is increased in growth cones from myosin IIB knockout mice. J Cell Sci 116, 1087–94.

    Article  CAS  PubMed  Google Scholar 

  • Brown ME, Bridgman PC (2004) Myosin function in nervous and sensory systems. J Neurobiol 58, 118–30.

    Article  CAS  PubMed  Google Scholar 

  • Carlier MF, Laurent V, Santolini J et al. (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: Implication in actin-based motility. J Cell Biol 136, 1307–22.

    Article  CAS  PubMed  Google Scholar 

  • Cheung A, Dantzig JA, Hollingworth S et al. (2002) A small- molecule inhibitor of skeletal muscle myosin II. Nat Cell Biol 4, 83–8.

    Article  CAS  PubMed  Google Scholar 

  • Cohan CS, Welnhofer EA, Zhao L, Matsumura F, Yamashiro S (2001) Role of the actin bundling protein fascin in growth cone morphogenesis: Localization in filopodia and lamel- lipodia. Cell Motil Cytoskeleton 48, 109–20.

    Article  CAS  PubMed  Google Scholar 

  • Dawe HR, Minamide LS, Bamburg JR, Cramer LP (2003) ADF/ cofilin controls cell polarity during fibroblast migration. Curr Biol 13, 252–7.

    Article  CAS  PubMed  Google Scholar 

  • DesMarais V, Ichetovkin I, Condeelis J, Hitchcock-DeGregori SE (2002) Spatial regulation of actin dynamics: A tropomyosin- free, actin-rich compartment at the leading edge. J Cell Sci 115, 4649–60.

    Article  CAS  PubMed  Google Scholar 

  • DesMarais V, Macaluso F, Condeelis J, Bailly M (2004) Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension. J Cell Sci 117, 3499–510.

    Article  CAS  PubMed  Google Scholar 

  • Diefenbach TJ, Latham VM, Yimlamai D, Liu CA, Herman IM, Jay DG (2002) Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J Cell Biol 158, 1207–17.

    Article  CAS  PubMed  Google Scholar 

  • Egan MF, Kojima M, Callicott JH et al. (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–69.

    Article  CAS  PubMed  Google Scholar 

  • Endo M, Ohashi K, Sasaki Y et al. (2003) Control of growth cone motility and morphology by LIM kinase and Slingshot via phosphorylation and dephosphorylation of cofilin. J Neurosci 23, 2527–37.

    CAS  PubMed  Google Scholar 

  • Evans LL, Hammer J, Bridgman PC (1997) Subcellular localization of myosin V in nerve growth cones and outgrowth from dilute-lethal neurons. J Cell Sci 110, 439–49.

    CAS  PubMed  Google Scholar 

  • Forscher P, Smith SJ (1988) Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol 107, 1505–16.

    Article  CAS  PubMed  Google Scholar 

  • Gallo G, Letourneau PC (1998) Localized sources of neuro- trophins initiate axon collateral sprouting. J Neurosci 18, 5403–14.

    CAS  PubMed  Google Scholar 

  • Gallo G, Letourneau PC (1999) Axon guidance: A balance of signals sets axons on the right track. Curr Biol 9, R490–2.

    Article  CAS  PubMed  Google Scholar 

  • Gallo G, Letourneau PC (2004) Regulation of growth cone actin filaments by guidance cues. J Neurobiol 58, 92–102.

    Article  CAS  PubMed  Google Scholar 

  • Gallo G, Lefcort FB, Letourneau PC (1997) The trkA receptor mediates growth cone turning toward a localized source of nerve growth factor. J Neurosci 17, 5445–54.

    CAS  PubMed  Google Scholar 

  • Gehler S, Gallo G, Veien E, Letourneau PC (2004a) p75 neurotrophin receptor signaling regulates growth cone filopodial dynamics through modulating RhoA activity. J Neurosci 24, 4363–72.

    Article  CAS  PubMed  Google Scholar 

  • Gehler S, Shaw AE, Sarmiere PD, Bamburg JR, Letourneau PC (2004b) BDNF regulation of growth cone filopodial dynamics is mediated through ADF/cofilin. J Neurosci (in press).

  • Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743–6.

    Article  CAS  PubMed  Google Scholar 

  • Gohla A, Bokoch GM (2002) 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol 12, 1704–10.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg DJ, Burmeister DW (1986) Stages in axon formation: Observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J Cell Biol 103, 1921–31.

    Article  CAS  PubMed  Google Scholar 

  • Gomez TM, Robles E, Poo M, Spitzer NC (2001) Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–7.

    Article  CAS  PubMed  Google Scholar 

  • Goodman CS, Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72, 77–98.

    Article  PubMed  Google Scholar 

  • Hariri AR, Goldberg TE, Mattay VS et al. (2003) Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 23, 6690–4.

    CAS  PubMed  Google Scholar 

  • Heidemann SR, Lamoureux P, Buxbaum RE (1990) Growth cone behavior and production of traction force. J Cell Biol 111, 1949–57.

    Article  CAS  PubMed  Google Scholar 

  • Hirose M, Ishizaki T, Watanabe N et al. (1998) Molecular dissection of the Rho-associated protein kinase (p160ROCK)- regulated neurite remodeling in neuroblastoma N1E-115 cells. J Cell Biol 141, 1625–36.

    Article  CAS  PubMed  Google Scholar 

  • Ichetovkin I, Han J, Pang KM, Knecht DA, Condeelis JS (2000) Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents. Cell Motil Cytoskeleton 45, 293–306.

    Article  CAS  PubMed  Google Scholar 

  • Ichetovkin I, Grant W, Condeelis J (2002) Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr Biol 12, 79–84.

    Article  CAS  PubMed  Google Scholar 

  • Jay DG (2000) The clutch hypothesis revisited: Ascribing the roles of actin-associated proteins in filopodial protrusion in the nerve growth cone. J Neurobiol 44, 114–25.

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Ito M, Amano M et al. (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–8.

    Article  CAS  PubMed  Google Scholar 

  • Kovacs M, Toth J, Hetenyi C, Malnasi-Csizmadia A, Sellers J (2004) Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279, 35 557–63.

    Google Scholar 

  • Lappalainen P, Drubin DG (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature 388, 78–82.

    Article  CAS  PubMed  Google Scholar 

  • Lebrand C, Dent EW, Strasser GA et al. (2004) Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 42, 37–49.

    Article  CAS  PubMed  Google Scholar 

  • Letourneau PC (1996) The cytoskeleton in nerve growth cone motility and axonal pathfinding. Perspect Dev Neurosci 4, 111–23.

    CAS  Google Scholar 

  • Lin CH, Forscher P (1995) Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 14, 763–71.

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Espreafico EM, Mooseker MS, Forscher P (1996) Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16, 769–82.

    Article  CAS  PubMed  Google Scholar 

  • Mallavarapu A, Mitchison T (1999) Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J Cell Biol 146, 1097–106.

    Article  CAS  PubMed  Google Scholar 

  • Matsutani S, Yamamoto N (2004) Brain-derived neurotrophic factor induces rapid morphological changes in dendritic spines of olfactory bulb granule cells in cultured slices through the modulation of glutamatergic signaling. Neuro- science 123, 695–702.

    CAS  Google Scholar 

  • Meberg PJ (2000) Signal-regulated ADF/cofilin activity and growth cone motility. Mol Neurobiol 21, 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Meberg PJ, Bamburg JR (2000) Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor. J Neurosci 20, 2459–69.

    CAS  PubMed  Google Scholar 

  • Meberg PJ, Ono S, Minamide LS, Takahashi M, Bamburg JR (1998) Actin depolymerizing factor and cofilin phosphoryla- tion dynamics: Response to signals that regulate neurite extension. Cell Motil Cytoskeleton 39, 172–90.

    Article  CAS  PubMed  Google Scholar 

  • Mitchison T, Kirschner M (1988) Cytoskeletal dynamics and nerve growth. Neuron 1, 761–72.

    Article  CAS  PubMed  Google Scholar 

  • Mogilner A, Oster G (2003) Force generation by actin polymerization II: The elastic ratchet and tethered filaments. Biophys J 84, 1591–605.

    CAS  PubMed  Google Scholar 

  • Nagata-Ohashi K, Ohta Y, Goto K et al. (2004) A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. J Cell Biol 165, 465–71.

    Article  PubMed  Google Scholar 

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233–46.

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y, Kousaka K, Nagata-Ohashi K et al. (2003) Differential activities, subcellular distribution and tissue expression patterns of three members of Slingshot family phosphatases that dephosphorylate cofilin. Genes Cells 8, 811–24.

    Article  CAS  PubMed  Google Scholar 

  • Okabe S, Hirokawa N (1991) Actin dynamics in growth cones. J Neurosci 11, 1918–29.

    CAS  PubMed  Google Scholar 

  • Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29, 545–76.

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt J, Agnew BJ, Abe H, Bamburg JR, Mitchison TJ (1997) Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J Cell Biol 136, 1323–32.

    Article  CAS  PubMed  Google Scholar 

  • Sabry JH, O’Connor TP, Evans L, Toroian-Raymond A, Kirschner M, Bentley D (1991) Microtubule behavior during guidance of pioneer neuron growth cones in situ. J Cell Biol 115, 381–95.

    Article  CAS  PubMed  Google Scholar 

  • Sala C (2002) Molecular regulation of dendritic spine shape and function. Neurosignals 11, 213–23.

    Article  CAS  PubMed  Google Scholar 

  • Samstag Y, Nebl G (2003) Interaction of cofilin with the serine phosphatases PP1 and PP2A in normal and neoplastic human T lymphocytes. Adv Enzyme Regul 43, 197–211.

    Article  CAS  PubMed  Google Scholar 

  • Sarmiere PD, Bamburg JR (2004) Regulation of the neuronal actin cytoskeleton by ADF/cofilin. J Neurobiol 58, 103–17.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158, 139–52.

    Article  CAS  PubMed  Google Scholar 

  • Shimada A, Mason CA, Morrison ME (1998) TrkB signaling modulates spine density and morphology independent of dendrite structure in cultured neonatal Purkinje cells. J Neurosci 18, 8559–70.

    CAS  PubMed  Google Scholar 

  • Smith CL (1994) Cytoskeletal movements and substrate interactions during initiation of neurite outgrowth by sympathetic neurons in vitro. J Neurosci 14, 384–98.

    CAS  PubMed  Google Scholar 

  • Steketee MB, Tosney KW (2002) Three functionally distinct adhesions in filopodia: Shaft adhesions control lamellar extension. J Neurosci 22, 8071–83.

    CAS  PubMed  Google Scholar 

  • Steketee M, Balazovich K, Tosney KW (2001) Filopodial initiation and a novel filament-organizing center, the focal ring. Mol Biol Cell 12, 2378–95.

    CAS  PubMed  Google Scholar 

  • Straight AF, Cheung A, Limouze J et al. (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299, 1743–7.

    Article  CAS  PubMed  Google Scholar 

  • Strasser GA, Rahim NA, VanderWaal KE, Gertler FB, Lanier LM (2004) Arp2/3 is a negative regulator of growth cone translo- cation. Neuron 43, 81–94.

    Article  CAS  PubMed  Google Scholar 

  • Suter DM, Forscher P (2000) Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol 44, 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Suter DM, Errante LD, Belotserkovsky V, Forscher P (1998) The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling. J Cell Biol 141, 227–40.

    Article  CAS  PubMed  Google Scholar 

  • Svitkina TM, Bulanova EA, Chaga OY et al. (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160, 409–21.

    Article  CAS  PubMed  Google Scholar 

  • Theriot JA (1997) Accelerating on a treadmill: ADF/cofilin promotes rapid actin filament turnover in the dynamic cytoskeleton. J Cell Biol 136, 1165–8.

    Article  CAS  PubMed  Google Scholar 

  • Toshima J, Toshima JY, Amano T, Yang N, Narumiya S, Mizuno K (2001a) Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol Biol Cell 12, 1131–45.

    CAS  PubMed  Google Scholar 

  • Toshima J, Toshima JY, Takeuchi K, Mori R, Mizuno K (2001b) Cofilin phosphorylation and actin reorganization activities of testicular protein kinase 2 and its predominant expression in testicular Sertoli cells. J Biol Chem 276, 31 449–58.

    Google Scholar 

  • Upadhyaya A, van Oudenaarden A (2004) Actin polymerization: Forcing flat faces forward. Curr Biol 14, R467–9.

    Article  CAS  PubMed  Google Scholar 

  • Wang FS, Wolenski JS, Cheney RE, Mooseker MS, Jay DG (1996) Function of myosin-V in filopodial extension of neuronal growth cones. Science 273, 660–3.

    Article  CAS  PubMed  Google Scholar 

  • Wang FS, Liu CW, Diefenbach TJ, Jay DG (2003) Modeling the role of myosin 1c in neuronal growth cone turning. Biophys J 85, 3319–28.

    Article  CAS  PubMed  Google Scholar 

  • Welnhofer EA, Zhao L, Cohan CS (1997) Actin dynamics and organization during growth cone morphogenesis in Helisoma neurons. Cell Motil Cytoskeleton 37, 54–71.

    Article  CAS  PubMed  Google Scholar 

  • Wylie SR, Chantler PD (2001) Separate but linked functions of conventional myosins modulate adhesion and neurite outgrowth. Nat Cell Biol 3, 88–92.

    Article  CAS  PubMed  Google Scholar 

  • Wylie SR, Wu P-J, Patel H, Chantler PD (1998) A conventional myosin motor drives neurite outgrowth. Proc Natl Acad Sci USA 95, 12 967–72.

    Google Scholar 

  • Yang N, Higuchi O, Ohashi K et al. (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–12.

    Article  CAS  PubMed  Google Scholar 

  • Zheng JQ, Wan JJ, Poo MM (1996) Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J Neurosci 16, 1140–9.

    CAS  PubMed  Google Scholar 

  • Zhou FQ, Cohan CS (2004) How actin filaments and microtu- bules steer growth cones to their targets. J Neurobiol 58, 84–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Bamburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fass, J., Gehler, S., Sarmiere, P. et al. Regulating filopodial dynamics through actin-depolymerizing factor/cofilin. Anato Sci Int 79, 173–183 (2004). https://doi.org/10.1111/j.1447-073x.2004.00087.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-073x.2004.00087.x

Key words

Navigation