Skip to main content
Log in

Biomechanical Strategies for Articular Cartilage Regeneration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Two major contributions to the development of articular cartilage are growth factors and mechanical loading. Growth factors have long been used to modulate the secretion of certain molecules from different cells. The TGF-β superfamily, specifically the BMPs, CDMPs, OPs, and GDFs, have a dramatic effect on the development of bone and cartilage tissue. These growth factors help produce an extracellular matrix that can withstand extreme loading conditions in the body. In addition to growth factors, it is known that mechanical forces stimulate the synthesis of extracellular proteins in vitro and in vivo and can affect the tissue's overall structure. Load-bearing tissue, such as articular cartilage, will atrophy in the absence of mechanical forces, and this observation has caused researchers to incorporate mechanical stimulation into the tissue engineering process. This article focuses on the importance of mechanical forces in tissue engineering of articular cartilage and the growth factors that help stimulate the formation of load-bearing tissue. © 2003 Biomedical Engineering Society.

PAC2003: 8780Rb, 8719Rr, 8715La, 8718La

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfredson, H., and R. Lorentzon. Superior results with continuous passive motion compared to active motion after periosteal transplantation. A retrospective study of human patella cartilage defect treatment. Knee Surg. Sports Traumatol. Arthrosc7:232–238, 1999.

    Google Scholar 

  2. Arevalo-Silva, C. A., Y. Cao, Y. Weng, M. Vacanti, A. Rodriguez, C. A. Vacanti, and R. D. Eavey. The effect of fibroblast growth factor and transforming growth factor-beta on porcine chondrocytes and tissue-engineered autologous elastic cartilage. Tissue Eng.7:81–88, 2001.

    Google Scholar 

  3. Athanasiou, K. A., A. Agarwal, and F. J. Dzida. Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage. J. Orthop. Res.12:340–349, 1994.

    Google Scholar 

  4. Athanasiou, K. A. and G. Constantinides. 1995, Board of Regents, University of Texas System: USA Patent No. 5,433,215.

  5. Athanasiou, K. A., G. Constantinides, and D. R. Lanctot. 1996, Board of Regents, University of Texas System: USA Patent No. 5,503,162.

  6. Athanasiou, K. A., G. Constantinides, and D. R. Lanctot.1997, Board of Regents, University of Texas System: USA Patent No. 5,673,708.

  7. Athanasiou, K. A., D. Korvick, and R. C. Schenck. Biodegradable implants for the treatment of osteochondral defects in a goat model. Tissue Eng.3:363–373, 1997.

    Google Scholar 

  8. Athanasiou, K. A., M. P. Rosenwasser, J. A. Buckwalter, M. Olmstead, and V. C. Mow. Biomechanical modeling of repair articular cartilage: Effects of passive motion on osteochondral defects in monkey knee joints. Tissue Eng.4:185–195, 1998.

    Google Scholar 

  9. Athanasiou, K. A., A. R. Shah, R. J. Hernandez, and R. G. LeBaron. Basic science of articular cartilage repair. Clin. Sports Med.20:223–247, 2001.

    Google Scholar 

  10. Bashir, A., M. L. Gray, J. Hartke, and D. Burstein. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn. Reson. Med.41:857–865, 1999.

    Google Scholar 

  11. Below, S., S. P. Arnoczky, J. Dodds, C. Kooima, and N. Walter. The split-line pattern of the distal femur: A consideration in the orientation of autologous cartilage grafts. Arthroscopy18:613–617, 2002.

    Google Scholar 

  12. Blunk, T., A. L. Sieminski, K. J. Gooch, D. L. Courter, A. P. Hollander, A. M. Nahir, R. Langer, G. Vunjak-Novakovic, and L. E. Freed. Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng.8:73–84, 2002.

    Google Scholar 

  13. Bonassar, L. J., A. J. Grodzinsky, E. H. Frank, S. G. Davila, N. R. Bhaktav, and S. B. Trippel. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J. Orthop. Res.19:11–17, 2001.

    Google Scholar 

  14. Chaipinyo, K., B. W. Oakes, and M. P. van Damme. Effects of growth factors on cell proliferation and matrix synthesis of low-density, primary bovine chondrocytes cultured in collagen I gels. J. Orthop. Res.20:1070–1078, 2002.

    Google Scholar 

  15. Darling, E. M., and K. A. Athanasiou. Articular cartilage bioreactors and bioprocesses. Tissue Eng.9:9–26, 2003.

    Google Scholar 

  16. Darling, E. M., and K. A. Athanasiou. Bioactive scaffold design for articular cartilage engineering. In: Biomedical Technology and Devices Handbook. Boca Raton, FL: CRC Press(in press).

  17. Davisson, T., S. Kunig, A. Chen, R. Sah, and A. Ratcliffe. Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J. Orthop. Res.20:842–848, 2002.

    Google Scholar 

  18. Davisson, T., R. L. Sah, and A. Ratcliffe. Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng.8:807–816, 2002.

    Google Scholar 

  19. Drexler, W., D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski. Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis. J. Rheumatol.28:1311–1318, 2001.

    Google Scholar 

  20. Dunkelman, N. S., M. P. Zimber, R. G. LeBaron, R. Pavelec, M. Kwan, and A. F. Purchio. Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnol. Bioeng.46:299–305, 1995.

    Google Scholar 

  21. Erlacher, L., C. K. Ng, R. Ullrich, S. Krieger, and F. P. Luyten. Presence of cartilage-derived morphogenetic proteins in articular cartilage and enhancement of matrix replacement. Arthritis Rheum.41:263–273, 1998.

    Google Scholar 

  22. Forslund, C., and P. Aspenberg. CDMP-2 induces bone or tendon-like tissue depending on mechanical stimulation. J. Orthop. Res.20:1170–1174, 2002.

    Google Scholar 

  23. Frenkel, S. R., P. B. Saadeh, B. J. Mehrara, G. S. Chin, D. S. Steinbrech, B. Brent, G. K. Gittes, and M. T. Longaker. Transforming growth factor beta superfamily members: Role in cartilage modeling. Plast. Reconstr. Surg.105:980–990, 2000.

    Google Scholar 

  24. Gooch, K. J., T. Blunk, D. L. Courter, A. L. Sieminski, P. M. Bursac, G. Vunjak-Novakovic, and L. E. Freed. IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem. Biophys. Res. Commun.286:909–915, 2001.

    Google Scholar 

  25. Gooch, K. J., T. Blunk, D. L. Courter, A. L. Sieminski, G. Vunjak-Novakovic, and L. E. Freed. Bone morphogenetic proteins-2,-12, and-13 modulate development of engineered cartilage. Tissue Eng.8:591–601, 2002.

    Google Scholar 

  26. Grimaud, E., D. Heymann, and F. Redini. Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev.13:241–257, 2002.

    Google Scholar 

  27. Gruber, R., C. Mayer, K. Bobacz, M. T. Krauth, W. Graninger, F. P. Luyten, and L. Erlacher. Effects of cartilage-derived morphogenetic proteins and osteogenic protein-1 on osteochondrogenic differentiation of periosteum-derived cells. Endocrinology142:2087–2094, 2001.

    Google Scholar 

  28. Guerne, P. A., A. Sublet, and M. Lotz. Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J. Cell Physiol.158:476–484, 1994.

    Google Scholar 

  29. Hodge, W. A., K. L. Carlson, R. S. Fijan, R. G. Burgess, P. O. Riley, W. H. Harris, and R. W. Mann. Contact pressures from an instrumented hip endoprosthesis. J. Bone Jt. Surg., Am. Vol.71:1378–1386, 1989.

    Google Scholar 

  30. Hu, J. C. Y., and K. A. Athanasiou. The role of mechanical forces in tissue engineering of articular cartilage, In: Functional Tissue Engineering. New York: Springer (in press).

  31. Ikenoue, T., M. C. Trindade, M. S. Lee, E. Y. Lin, D. J. Schurman, S. B. Goodman, and R. L. Smith. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure. J. Orthop. Res.21:110–116, 2003.

    Google Scholar 

  32. Kaps, C., C. Bramlage, H. Smolian, A. Haisch, U. Ungethum, G. R. Burmester, M. Sittinger, G. Gross, and T. Haupl. Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum.46:149–162, 2002.

    Google Scholar 

  33. Kim, H. K., R. G. Kerr, T. F. Cruz, and R. B. Salter. Effects of continuous passive motion and immobilization on synovitis and cartilage degradation in antigen induced arthritis. J. Rheumatol.22:1714–1721, 1995.

    Google Scholar 

  34. Koay, E. J., A. C. Shieh, and K. A. Athanasiou. Creep indentation of single cells. J. Biomech. Eng.125:334–341, 2003.

    Google Scholar 

  35. Laasanen, M. S., J. Toyras, J. Hirvonen, S. Saarakkala, R. K. Korhonen, M. T. Nieminen, I. Kiviranta, and J. S. Jurvelin. Novel mechano-acoustic technique and instrument for diagnosis of cartilage degeneration. Physiol. Meas23:491–503, 2002.

    Google Scholar 

  36. Laurent, D., J. Wasvary, J. Yin, M. Rudin, T. C. Pellas, and E. O'Byrne. Quantitative and qualitative assessment of articular cartilage in the goat knee with magnetization transfer imaging. Magn. Reson. Imaging19:1279–1286, 2001.

    Google Scholar 

  37. Lee, M. S., T. Ikenoue, M. C. Trindade, N. Wong, S. B. Goodman, D. J. Schurman, and R. L. Smith. Protective effects of intermittent hydrostatic pressure on osteoarthritic chondrocytes activated by bacterial endotoxin. J. Orthop. Res.21:117–122, 2003.

    Google Scholar 

  38. Luyten, F. P., Y. M. Yu, M. Yanagishita, S. Vukicevic, R. G. Hammonds, and A. H. Reddi. Natural bovine osteogenin and recombinant human bone morphogenetic protein-2B are equipotent in the maintenance of proteoglycans in bovine articular cartilage explant cultures. J. Biol. Chem.267:3691–3695, 1992.

    Google Scholar 

  39. Lyyra, T., I. Kiviranta, U. Vaatainen, H. J. Helminen, and J. S. Jurvelin. characterization of indentation stiffness of articular cartilage in the normal human knee. J. Biomed. Mater. Res.48:482–487, 1999.

    Google Scholar 

  40. Madry, H., R. Padera, J. Seidel, R. Langer, L. E. Freed, S. B. Trippel, and G. Vunjak-Novakovic. Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum. Gene Ther.13:1621–1630, 2002.

    Google Scholar 

  41. Mattioli-Belmonte, M., A. Gigante, R. A. Muzzarelli, R. Politano, A. De Benedittis, N. Specchia, A. Buffa, G. Biagini, and F. Greco. N,N-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Med. Biol. Eng. Comput.37:130–134, 1999.

    Google Scholar 

  42. Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng.122:252–260, 2000.

    Google Scholar 

  43. Miura, Y., J. Parvizi, J. S. Fitzsimmons, and S. W. O'Driscoll. Brief exposure to high-dose transforming growth factor-betal enhances periosteal chondrogenesis: A preliminary report. J. Bone Jt. Surg., Am. Vol.84–A:793–799, 2002.

    Google Scholar 

  44. Mizuno, S., T. Tateishi, T. Ushida, and J. Glowacki. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J. Cell Physiol.193:319–327, 2002.

    Google Scholar 

  45. Mow, V. C., E. L. Flatow, and G. A. Ateshian. Biomechanics, In: Orthopaedic Basic Science: Biology and Biomechanics of the Musculoskeletal System, edited by J. A. Buckwalter, T. A. Einhorn, and S. R. Simon. American Academy of Orthopaedic Surgeons, 2000, pp. 140–142.

  46. Niederauer, G. G., G. M. Niederauer, L. C. J. Cullen, K. A. Athanasiou, J. B. Thomas, and M. Q. Niederauer.Trans. BMES.

  47. Niederauer, G. G., D. R. Schmidt, J. C. DeLee, K. A. Athanasiou, J. B. Thomas, H. M. Aberman, T. M. Simon, D. W. Jackson, G. M. Niederauer, and M. Q. Niederauer. Trans. ICRS.

  48. Nieminen, M. T., J. Rieppo, J. Silvennoinen, J. Toyras, J. M. Hakumaki, M. M. Hyttinen, H. J. Helminen, and J. S. Jurvelin. Spatial assessment of articular cartilage proteoglycans with Gd-DTPA-enhanced T1 imaging. Magn. Reson. Med.48:640–648, 2002.

    Google Scholar 

  49. O'Connor, W. J., T. Botti, S. N. Khan, and J. M. Lane. The use of growth factors in cartilage repair. Orthop. Clin. North Am.31:399–410, 2000.

    Google Scholar 

  50. Pacifici, M., E. Koyama, M. Iwamoto, and C. Gentili. Development of articular cartilage: what do we know about it and how may it occur?Connect. Tissue Res.41:175–184, 2000.

    Google Scholar 

  51. Paul, P. K., E. O'Byrne, V. Blancuzzi, D. Wilson, D. Gunson, F. L. Douglas, J. Z. Wang, and R. S. Mezrich. Magnetic resonance imaging reflects cartilage proteoglycan degradation in the rabbit knee. Skeletal Radiol.20:31–36, 1991.

    Google Scholar 

  52. Pecina, M., M. Jelic, S. Martinovic, M. Haspl, and S. Vukicevic. Articular cartilage repair: The role of bone morphogenetic proteins. Int. Orthop.26:131–136, 2002.

    Google Scholar 

  53. Pei, M., L. A. Solchaga, J. Seidel, L. Zeng, G. Vunjak-Novakovic, A. I. Caplan, and L. E. Freed. Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J.16:1691–1694, 2002.

    Google Scholar 

  54. Perka, C., U. Arnold, R. S. Spitzer, and K. Lindenhayn. The use of fibrin beads for tissue engineering and subsequential transplantation. Tissue Eng.7:359–361, 2001.

    Google Scholar 

  55. Reddi, A. H.Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol.16:247–252, 1998.

    Google Scholar 

  56. Schinagl, R. M., M. K. Ting, J. H. Price, and R. L. Sah. Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Ann. Biomed. Eng.24:500–512, 1996.

    Google Scholar 

  57. Shieh, A. C., and K. A. Athanasiou. Principles of cell mechanics for cartilage tissue engineering. Ann. Biomed. Eng.31:1–11, 2003.

    Google Scholar 

  58. Shin, D., and K. Athanasiou. Cytoindentation for obtaining cell biomechanical properties. J. Orthop. Res.17:880–890, 1999.

    Google Scholar 

  59. Smith, R. L., B. S. Donlon, M. K. Gupta, M. Mohtai, P. Das, D. R. Carter, J. Cooke, G. Gibbons, N. Hutchinson, and D. J. Schurman. Effects of fluid-induced shear on articular chondrocyte morphology and metabolism. J. Orthop. Res.13:824–831, 1995.

    Google Scholar 

  60. Sporn, M. B., A. B. Roberts, L. M. Wakefield, and R. K. Assoian. Transforming growth factor-beta: Biological function and chemical structure. Science233:532–534, 1986.

    Google Scholar 

  61. Suh, J. K., I. Youn, and F. H. Fu. An calibration of an ultrasound transducer: A potential application for an ultrasonic indentation test of articular cartilage. J. Biomech.34:1347–1353, 2001.

    Google Scholar 

  62. Toyras, J., T. Lyyra-Laitinen, M. Niinimaki, R. Lindgren, M. T. Nieminen, I. Kiviranta, and J. S. Jurvelin. Estimation of the Young's modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness. J. Biomech.34:251–256, 2001.

    Google Scholar 

  63. Uchio, Y., M. Ochi, N. Adachi, K. Kawasaki, and J. Iwasa. Arthroscopic assessment of human cartilage stiffness of the femoral condyles and the patella with a new tactile sensor. Med. Eng. Phys.24:431–435, 2002.

    Google Scholar 

  64. Valcourt, U., J. Gouttenoire, A. Moustakas, D. Herbage, and F. Mallein-Gerin. Functions of transforming growth factor-beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J. Biol. Chem.277:33545–33545, 2002.

    Google Scholar 

  65. van der Kraan, P., E. Vitters, and W. van den Berg. Differential effect of transforming growth factor beta on freshly isolated and cultured articular chondrocytes. J. Rheumatol.19:140–145, 1992.

    Google Scholar 

  66. Vanwanseele, B., F. Eckstein, H. Knecht, E. Stussi, and A. Spaepen. Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum.46:2073–2078, 2002.

    Google Scholar 

  67. Verschure, P. J., L. A. Joosten, P. M. van der Kraan, and W. B. Van den Berg. Responsiveness of articular cartilage from normal and inflamed mouse knee joints to various growth factors. Ann. Rheum. Dis.53:455–460, 1994.

    Google Scholar 

  68. Vunjak-Novakovic, G., N. Searby, J. De Luis, and L. E. Freed. Microgravity studies of cells and tissues. Ann. N.Y. Acad. Sci.974:504–517, 2002.

    Google Scholar 

  69. Weisser, J., B. Rahfoth, A. Timmermann, T. Aigner, R. Brauer, and K. von der Mark. Role of growth factors in rabbit articular cartilage repair by chondrocytes in agarose. Osteoarthritis Cartilage9, Suppl. A:S48–54, 2001.

    Google Scholar 

  70. Ziegler, J., U. Mayr-Wohlfart, S. Kessler, D. Breitig, and K. P. Gunther. Adsorption and release properties of growth factors from biodegradable implants. J. Biomed. Mater. Res.59:422–428, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darling, E.M., Athanasiou, K.A. Biomechanical Strategies for Articular Cartilage Regeneration. Annals of Biomedical Engineering 31, 1114–1124 (2003). https://doi.org/10.1114/1.1603752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1603752

Navigation