Skip to main content
Log in

Synthesis of heavy and superheavy elements by reactions of massive nuclei

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

By comparing theoretical and experimental excitation functions of evaporation residues resulting from the same compound nucleus or heavy and superheavy nuclei, it is possible to understand the effect of the entrance channel and the shell structure of reacting nuclei on the fusion mechanism. The competition of complete fusion with the quasifission process is strongly related to the intrinsic fusion barrier B *fus and the quasifission barrier B qf as well as the size of the well in the nucleus-nucleus potential. In our calculations of the excitation functions for capture, fusion, and evaporation residues, we use the relevant variables such as mass asymmetry of nuclei in the entrance channel, potential energy surface, driving potential, spin distribution, and surviving probability of compound nucleus that are responsible for the mechanism of the fusion-fission process. As a result, we obtain a beam energy window for the capture of the nuclei before the system fuses and the Γnf ratio at each step along the deexcitation cascade of the compound nucleus. Calculations performed in the framework of the model taking into account the nuclear shell effect and shape of colliding nuclei allow us to reach useful conclusions about the mechanism of the fusion-fission process and the production of the evaporation residues. We analyze the 40Ar + 176Hf, 86Kr + 130Xe, and 124Sn + 92Zr reactions leading to 216Th*; the 32S + 182W and 60Ni + 154Sm reactions leading to 214Th*; the 48Ca + 248Cm reaction leading to the 296116 compound nucleus; and the 48Ca + 249Cf reaction leading to the 297118 compound nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Back, R. R. Betts, K. Cassidy, et al., Phys. Rev. Lett. 50, 818 (1983).

    Article  ADS  Google Scholar 

  2. B. B. Back, Phys. Rev. C 31, 2104 (1985).

    Article  ADS  Google Scholar 

  3. J. Tõke et al., Nucl. Phys. A 440, 327 (1985).

    Google Scholar 

  4. J. Tõke et al., Phys. Lett. B 142B, 258 (1984).

    Google Scholar 

  5. W. Q. Shen et al., Europhys. Lett. 1, 113 (1986).

    ADS  Google Scholar 

  6. W. Q. Shen et al., Phys. Rev. C 36, 115 (1987).

    ADS  MATH  Google Scholar 

  7. B. B. Back et al., Phys. Rev. C 32, 195 (1985).

    ADS  Google Scholar 

  8. B. B. Back, P. B. Fernández, B. G. Glagola, et al., Phys. Rev. C 53, 1734 (1996).

    Article  ADS  Google Scholar 

  9. R. L. Hahn, K. S. Toth, Y. LeBeyec, et al., Phys. Rev. C 36, 2132 (1987).

    ADS  Google Scholar 

  10. R. L. Hahn, K. S. Toth, C. Cabot, et al., Phys. Rev. Lett. 42, 218 (1979).

    Article  ADS  Google Scholar 

  11. A. C. Berriman, D. J. Hinde, M. Dasgupta, et al., Nature (London) 413, 144 (2001).

    Article  ADS  Google Scholar 

  12. V. V. Volkov, N. A. Antonenko, E. A. Cherepanov, et al., Phys. Lett. B 319, 425 (1993); Phys. Rev. C 51, 2635 (1995).

    ADS  Google Scholar 

  13. G. Giardina, F. Hanappe, A. I. Muminov, et al., Nucl. Phys. A 671, 165 (2000).

    ADS  Google Scholar 

  14. G. Giardina, S. Hofmann, A. I. Muminov, and A. K. Nasirov, Eur. Phys. J. A 8, 205 (2000).

    ADS  Google Scholar 

  15. W. J. Swiatecki, Phys. Scr. 24, 113 (1981); Nucl. Phys. A 376, 275 (1982).

    ADS  Google Scholar 

  16. K. T. R. Davies, A. J. Sierk, and J. R. Nix, Phys. Rev. C 28, 679 (1983).

    Article  ADS  Google Scholar 

  17. P. Fröbrich, Phys. Rep. 116, 337 (1984); Phys. Lett. B 215, 36 (1988).

    ADS  Google Scholar 

  18. J. P. Blocki, H. Feldmeier, and W. J. Swiatecki, Nucl. Phys. A 459, 145 (1986).

    ADS  Google Scholar 

  19. G. Audi and A. H. Wapstra, Nucl. Phys. A 595, 509 (1995).

    Google Scholar 

  20. P. Möller and J. R. Nix, At. Data Nucl. Data Tables 39, 213 (1988).

    ADS  Google Scholar 

  21. G. G. Adamian, R. V. Jolos, A. I. Muminov, and A. K. Nasirov, Phys. Rev. C 56, 373 (1997).

    ADS  Google Scholar 

  22. A. A. Bogatchev et al., in Proceeding of the International Conference on Nuclear Physics at Border Lines, Lipari, Italy, Ed. by G. Fazio, G. Giardina, F. Hanappe, et al. (World Sci., Singapore, 2002), p. 56.

    Google Scholar 

  23. M. G. Itkis et al., in Proceedings of the International Conference on Nuclear Physics at Border Lines, Lipari, Italy, Ed. by G. Fazio, G. Giardina, F. Hanappe, et al. (World Sci., Singapore, 2002), p. 146.

    Google Scholar 

  24. O. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New York, 1969, 1975), Vols. 1, 2.

    Google Scholar 

  25. S. E. Vigdor and H. J. Karwowski, Phys. Rev. C 26, 1068 (1982).

    ADS  Google Scholar 

  26. A. D’Arrigo, G. Giardina, M. Herman, and A. Taccone, Phys. Rev. C 46, 1437 (1992).

    ADS  Google Scholar 

  27. A. D’Arrigo, G. Giardina, M. Herman, et al., J. Phys. G 20, 365 (1994).

    ADS  Google Scholar 

  28. R. N. Sagaidak, V. I Chepigin, A. P. Kabachenko, et al., J. Phys. G 24, 611 (1998).

    Article  ADS  Google Scholar 

  29. A. V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, Yad. Fiz. 21, 485 (1975) [Sov. J. Nucl. Phys. 21, 255 (1975)].

    Google Scholar 

  30. A. V. Ignatyuk, K. K. Istekov, and G. N. Smirenkin, Yad. Fiz. 29, 875 (1979) [Sov. J. Nucl. Phys. 29, 450 (1979)].

    Google Scholar 

  31. A. J. Sierk, Phys. Rev. C 33, 2039 (1986).

    Article  ADS  Google Scholar 

  32. P. Grange and H. A. Weidenmüller, Phys. Lett. B 96B, 26 1980).

    ADS  Google Scholar 

  33. E. M. Rastopchin, S. I. Mul’gin, Yu. V. Ostapenko, et al., Yad. Fiz. 53 1200 (1991) [Sov. J. Nucl. Phys. 53, 741 (1991)].

    Google Scholar 

  34. H. A. Kramers, Physica 7, 284 (1940).

    Article  MATH  MathSciNet  Google Scholar 

  35. C. Bhattacharya, S. Bhattacharya, and K. Krishan, Phys. Rev. C 53, 1012 (1996).

    Article  ADS  Google Scholar 

  36. Yu. Ts. Oganessian, A. Yu. Lavrentev, A. G. Popeko, et al., Preprint No. E7-97-206, JINR (Joint Inst. for Nucl. Res., Dubna, 1997), p. 62.

  37. D. Vermeulen, H.-G. Clerc, C.-C. Sahm, et al., Z. Phys. A 318, 157 (1984).

    Google Scholar 

  38. H.-G. Clerc, J. G. Keller, C.-C. Sahm, et al., Nucl. Phys. A 419, 571 (1984).

    ADS  Google Scholar 

  39. C.-C. Sahm, H.-G. Clerc, K.-H. Schmidt, et al., Nucl. Phys. A 441, 316 (1985).

    ADS  Google Scholar 

  40. S. Mitsuoka, H. Ikezoe, K. Nishio, and J. Lu, Phys. Rev. C 62, 054603 (2000).

    Google Scholar 

  41. E. Kozulin, private communication.

  42. E. A. Cherepanov, V. V. Volkov, N. A. Antonenko, and A. K. Nasirov, Nucl. Phys. A 583, 165 (1995).

    ADS  Google Scholar 

  43. G. G. Adamian, N. A. Antonenko, W. Scheid, and V. V. Volkov, Nucl. Phys. A 633, 409 (1998).

    ADS  Google Scholar 

  44. E. A. Cherepanov, in Proceedings of the International Conference on Nuclear Physics “Shells-50,” Dubna, Russia, 1999, Ed. by Yu. Ts. Oganessian and R. Kalpakchieva (World Sci., Singapore, 2000), p. 266.

    Google Scholar 

  45. C. Y. Wong, Phys. Rev. Lett. 31, 766 (1973).

    ADS  Google Scholar 

  46. A. B. Migdal, Theory of the Finite Fermi Systems and Properties of Atomic Nuclei (Nauka, Moscow, 1983) (in Russian).

    Google Scholar 

  47. S. Raman, C. H. Malarkey, W. T. Milner, et al., At. Data Nucl. Data Tables 36, 1 (1987).

    Article  ADS  Google Scholar 

  48. R. H. Spear, At. Data Nucl. Data Tables 42, 55 (1989).

    Article  ADS  Google Scholar 

  49. G. G. Adamian, A. K. Nasirov, N. V. Antonenko, and R. V. Jolos, Fiz. Élem. Chastits At. Yadra 25 1379 (1994) [Phys. Part. Nucl. 25, 583 (1994)].

    Google Scholar 

  50. D. Pines and P. Noziéres, Theory of Quantum Liquids (Benjamin, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 66, No. 6, 2003, pp. 1107–1121.

Original English Text Copyright © 2003 by Fazio, Giardina, Lamberto, Ruggeri, Bonsignore, Palamara, Muminov, Nasirov, Benoit, Hanappe, Materna, Stuttgé.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazio, G., Giardina, G., Lamberto, A. et al. Synthesis of heavy and superheavy elements by reactions of massive nuclei. Phys. Atom. Nuclei 66, 1071–1085 (2003). https://doi.org/10.1134/1.1586420

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1586420

Keywords

Navigation