Skip to main content
Log in

Formation of the space charge region in diffusion p-n junctions under high-density current interruption

  • Solid-State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The recovery of diodes with diffusion p-n junctions in the case of high reverse current density j is analyzed. A condition for quasi-neutrality breaking in the diffusion layers with allowance for the dependence of charge carrier mobility μ on electric field strength E is obtained that is valid for a wide range of j. The problem of formation of the space charge region in a circuit with inductance L and resistance R is reduced to a system of two ordinary differential equations. Approximation of a numerical solution to this system makes it possible to derive crude analytical relationships between interrupted current density {ie88-1}, circuit parameters, diode parameters, and parameters of a forming voltage pulse (with amplitude V m and pulse rise time t p). The limiting parameters of a pulser with an inductive energy storage and current interrupter based on diffusion diodes are studied. The critical density of interrupted current {ie88-2} is determined at which the field in the space charge region near the anode reaches breakdown value E b and intense impact ionization by holes begins. The impact ionization decreases the rates of current decay and voltage increase in the space charge region. As a result, at {ie88-3}, t p starts increasing and the overvoltage factor of the pulser decreases. The value of V m corresponding to {ie88-4} is roughly given by {ie88-5}, where m is the number of diodes in the interrupter, ɛ is the permittivity of the semiconductor, {ie88-6} is the saturated drift velocity of holes, and l p is the depth of the p-n junction (diffusion depth). Theoretical predictions are confirmed by exact numerical simulation of the recovery process and qualitatively agree with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Benda and E. Spenke, Proc. IEEE 55, 1331 (1967).

    Article  Google Scholar 

  2. H. Benda and F. Dannhauser, Solid-State Electron. 11, 1 (1968).

    Article  ADS  Google Scholar 

  3. S. N. Rukin and S. P. Timoshenkov, in Proceedings of the 9th Symposium on High-Current Electronics, Russia, 1992, pp. 218–219.

  4. S. A. Darznek, Yu. A. Kotov, G. A. Mesyats, and S. N. Rukin, Dokl. Akad. Nauk 334, 304 (1994) [Phys. Dokl. 39, 105 (1994)].

    Google Scholar 

  5. S. N. Rukin, Prib. Tekh. Éksp., No. 4, 5 (1999).

    Google Scholar 

  6. S. A. Darznek, G. A. Mesyats, and S. N. Rukin, Zh. Tekh. Fiz. 67(10), 64 (1997) [Tech. Phys. 42, 1170 (1997)].

    Google Scholar 

  7. S. A. Darznek, S. N. Rukin, and S. N. Tsyranov, Zh. Tekh. Fiz. 70(4), 56 (2000) [Tech. Phys. 45, 436 (2000)].

    Google Scholar 

  8. S. N. Rukin and S. N. Tsyranov, Pis’ma Zh. Tekh. Fiz. 26(18), 41 (2000) [Tech. Phys. Lett. 26, 824 (2000)].

    Google Scholar 

  9. A. V. Ponomarev, S. N. Rukin, and S. N. Tsyranov, Pis’ma Zh. Tekh. Fiz. 27(20), 29 (2001) [Tech. Phys. Lett. 27, 857 (2001)].

    Google Scholar 

  10. S. N. Rukin and S. N. Tsyranov, Pis’ma Zh. Tekh. Fiz. 30(1), 43 (2004) [Tech. Phys. Lett. 30, 19 (2004)].

    Google Scholar 

  11. A. V. Gorbatyuk and P. V. Rodin, Preprint No. 1276, FTI (Ioffe Physicotechnical Institute, Leningrad, 1988).

  12. A. F. Kardo-Sysoev and M. V. Popova, Fiz. Tekh. Poluprovodn. (Leningrad) 25, 3 (1991) [Sov. Phys. Semicond. 25, 1 (1991)].

    Google Scholar 

  13. F. N. Trofimenkoff, Proc. IEEE 53, 1765 (1965).

    Article  Google Scholar 

  14. Yu. N. Serezhkin and A. A. Shesterkina, Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 1109 (2003) [Semiconductors 37, 1085 (2003)].

    Google Scholar 

  15. S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  16. A. S. Kyuregyan and S. N. Yurkov, Fiz. Tekh. Poluprovodn. (Leningrad) 23, 1819 (1989) [Sov. Phys. Semicond. 23, 1126 (1989)].

    Google Scholar 

  17. T. T. Mnatsakanov, I. L. Rostovtsev, and N. I. Philatov, Solid-State Electron. 30, 579 (1987).

    Article  ADS  Google Scholar 

  18. I. V. Grekhov and Yu. N. Serezhkin, Avalanche Breakdown of p-n Junction in Semiconductors (Énergiya, Leningrad, 1980) [in Russian].

    Google Scholar 

  19. I. V. Grekhov, E. M. Geifman, and L. S. Kostina, Zh. Tekh. Fiz. 53, 726 (1983) [Sov. Phys. Tech. Phys. 28, 459 (1983)].

    Google Scholar 

  20. I. V. Grekhov, Izv. Ross. Akad. Nauk, Énerg., No. 1, 53 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kyuregyan.

Additional information

Translated from Zhurnal Tekhnicheskoĭ Fiziki, Vol. 75, No. 7, 2005, pp. 88–96.

Original Russian Text Copyright © 2005 by Grekhov, Kyuregyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grekhov, I.V., Kyuregyan, A.S. Formation of the space charge region in diffusion p-n junctions under high-density current interruption. Tech. Phys. 50, 904–913 (2005). https://doi.org/10.1134/1.1994972

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1994972

Keywords

Navigation