Skip to main content
Log in

Comparison between satellite spectrometric and aircraft measurements of the gaseous composition of the troposphere over Siberia during the forest fires of 2012

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The vertical profiles of the O3, CO, CO2 and CH4 concentrations measured onboard the Optik Tu-134 aircraft laboratory and retrieved from data obtained with an IASI Fourier transform spectrometer operating aboard a MetOp satellite (European Space Agency) have been compared. This comparison shows that absolute differences between aircraft satellite ozone concentrations may vary from 55 to 15 ppb at the land surface and within the lower boundary layer and from 30 to −15 ppb at a height of 7000 m. Their relative differences range within 60 to 30% at a height of 500 m and 30 to −35% at a height of 7000 m. Absolute differences between aircraft and satellite carbon-monoxide concentrations may vary from 80 to 2300 ppb, while their relative differences range within −140 to 98%. For methane, the mean difference is maximal within the atmospheric boundary layer (90 ppb). According to the data on all profiles, the maximum and minimum differences reach 220 and 8 ppb, respectively, within the atmospheric boundary layer. Minimum differences range from zero at the land surface to −100 ppb in the upper troposphere. For carbon dioxide, the mean difference between the results of aircraft and satellite measurements ranges from −2 to −9 ppm. In the free troposphere, at a height of more than 3000 m, this difference is almost constant and amounts to −6 ppm. Over all flights, the maximum and minimum differences between aircraft and satellite CO2 concentrations range from 14 to −4 ppm and from −7 to −16 ppm, respectively, within the atmospheric boundary layer. In this case, the maximum and minimum relative deviations over all flights amount to 3.4 and −4.2%, respectively, within the atmospheric boundary layer. These differences are significantly larger than those found earlier for the background conditions. It is necessary to improve the vertical gas distribution models used in the algorithms of satellite-data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anokhin, G.G., Antokhin, P.N., Arshinov, M.Yu., Barsuk, V.E., Belan, B.D., Belan, S.B., Davydov, D.K., Ivlev, G.A., Kozlov, A.V., Kozlov, V.S., Morozov, M.V., Panchenko, M.V., Penner, I.E., Pestunov, D.A., Sikov, G.P., Simonenkov, D.V., Sinitsyn, D.S., Tolmachev, G.N., Filippov, D.V., Fofonov, A.V., Chernov, D.G., Shamanaev, V.S., and Shmargunov, V.P., Optik Tu-134 aircraft laboratory, Opt. Atmos. Okeana, 2011, vol. 24, no. 9, pp. 805–816.

    Google Scholar 

  • Antokhin, P.N., Arshinov, M.Yu., Belan, B.D., Davydov, D.K., Zhidovkin, E.V., Ivlev, G.A., Kozlov, A.V., Kozlov, V.S., Panchenko, M.V., Penner, I.E., Pestunov, D.A., Simonenkov, D.V., Tolmachev, G.N., Fofonov, A.V., Shamanaev, V.S., and Shmargunov, V.P., Optik-E AN-30 aircraft laboratory: 20 years of environmental research, J. Atmos. Oceanic Technol., 2012, vol. 29, no. 1, pp. 64–75.

    Article  Google Scholar 

  • Antokhin, P.N. and Belan, B.D., Control of the dynamics of tropospheric ozone through the stratosphere, Atmos. Oceanic Opt., 2013, vol. 26, no. 3, pp. 207–213.

    Article  Google Scholar 

  • Arshinov, M.Yu., Belan, B.D., Krasnov, O.A., Kovalevskii, V.K., Pirogov, V.A., Plotnikov, A.P., Tolmachev, G.N., and Fofonov, A.V., Comparison of ultraviolet and chemiluminescence ozonometers, Opt. Atmos. Okeana, 2002, vol. 15, no. 8, pp. 723–726.

    Google Scholar 

  • Arshinov, M.Yu., Belan, B.D., Davydov, D.K., Krekov, G.M., Fofonov, A.V., Babchenko, S.V., Inoue, G., Machida, T., Maksutov, Sh., Sasakawa, M., and Shimoyama, K., Dynamics of the vertical distribution of greenhouse gases in the atmosphere, Opt. Atmos. Okeana, 2012, vol. 25, no. 12, pp. 1051–1061.

    Google Scholar 

  • Arshinov, M.Yu., Afonin, S.V., Belan, B.D., Belov, V.V., Gridnev, Yu.V., Davydov, D.K., Machida, T., Nedelek, F., Parizh, Zh.-D., and Fofonov, A.V., Comparison of satellite and aircraft measurements of the gas composition in the troposphere over southwest Siberia, Opt. Atmos. Okeana, 2013, vol. 26, no. 9, pp. 773–782.

    Google Scholar 

  • August, T., Klaes, D., Schlüssel, P., Hultberg T., Crapeau M., Arriaga A., O’Carroll A., Coppens D., Munro R., Calbet X., IASI on Metop-A: Operational Level 2 retrievals after five years in orbit, J. Quant. Spectrosc. Radiat. Transfer, 2012, vol. 113, no. 11, pp. 1340–1371. doi: 10.1016/j.jqsrt.2012.02.028

    Article  Google Scholar 

  • Belan, B.D., Tolmachev, G.N., and Fofonov, A.V., Ozone vertical distribution in the troposphere over south regions of Western Siberia, Atmos. Oceanic Opt., 2011, vol. 24, no. 2, pp. 181–187.

    Article  Google Scholar 

  • Belan, B.D. and Krekov, G.M., Anthropogenic impact on the content of greenhouse gases in the troposphere: Methane, Opt. Atmos. Okeana, 2012, vol. 25, no. 4, pp. 361–373.

    Google Scholar 

  • Bondur, V.G., Satellite monitoring of wildfires during the anomalous heat wave of 2010 in Russia, Izv., Atmos. Ocean. Phys., 2011a, vol. 47, no. 9, pp. 1039–1048.

    Article  Google Scholar 

  • Bondur, V.G., Satellite monitoring of wildfires, Vestn. RFFI, 2011b, nos. 2–3, pp. 78–94.

    Google Scholar 

  • Bondur, V.G., Importance of aerospace remote sensing approach to the monitoring of nature fire in Russia, Int. Forest Fire News (IFFN), 2010, no. 40, pp. 43–57.

    Google Scholar 

  • Crevoisier, C., Chédin, A., Matsueda, H., Machida, T., Armante, R., and Scott, N.A., First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations, Atm. Chem. Phys., 2009, vol. 9, no. 14, pp. 4797–4810.

    Article  Google Scholar 

  • De Laat, T.J., Dijkstra, R., Schrijver, H., Nédélec, P., and Aben, I., Validation of six years of SCIAMACHY carbon monoxide observations using MOZAIC CO profile measurements, Atm. Meas. Tech., 2012, vol. 5, no. 9, pp. 2133–2142.

    Article  Google Scholar 

  • De Wachter, E., Barret, B., Le Flochmoën, E., Pavelin, E., Matricardi, M., Clerbaux, C., Hadji-Lazaro, J., George, M., Hurtmans, D., Coheur, P.-F., Nédélec, P., and Cammas, J.P., Retrieval of MetOp-A/IASI CO profiles and validation with MOZAIC data, Atmos. Meas. Tech., 2012, vol. 5, no. 11, pp. 2843–2857.

    Article  Google Scholar 

  • Dunlea, E.J., Herndon, S.C., Nelson, D.D., Volkamer, R.M., Lamb, B.K., Allwine, E.J., Grutter, M., Ramos Villegas, C.R., Marquez, C., Blanco, S., Cardenas, B., Kolb, C.E., Molina, L.T., and Molina, M.J., Technical note: Evaluation of standard ultraviolet absorption ozone monitors in a polluted urban environment, Atmos. Chem. Phys., 2006, vol. 6, no. 10, pp. 3163–3180.

    Article  Google Scholar 

  • Klonecki, A., Pommier, M., Clerbaux, C., Ancellet, G., Cammas, J.-P., Coheur, P.-F., Cozic, A., Diskin, G.S., Hadji-Lazaro, J., Hauglustaine, D.A., Hurtmans, D., Khattatov, B., Lamarque, J.-F., Law, K.S., Nédélec, P., Paris, J.-D., Podolske, J.R., Prunet, P., Schlager, H., Szopa, S., and Turquety, S., Assimilation of IASI satellite CO fields into a global chemistry transport model for validation against aircraft measurements, Atmos. Chem. Phys., 2012, vol. 12, no. 10, pp. 4493–4512.

    Article  Google Scholar 

  • Kramchaninova, E.K. and Uspenskii, A.B., Monitoring the total atmospheric ozone content using data collected by the Elektro-L Russian geostationary meteorological satellite, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 9, pp. 986–992.

    Article  Google Scholar 

  • Kukharskii, A.V. and Uspenskii, A.B., Determination of tropospheric mean carbon dioxide concentration from satellite high spectral resolution IR-sounder data, Russ. Meteorol. Hydrol., 2009, vol. 34, no. 4, pp. 202–211.

    Article  Google Scholar 

  • Kukharskii, A.V. and Uspenskii, A.B., Monitoring of carbon dioxide content in the troposphere over boreal ecosystems in Siberia, Sovr. Probl. Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 2010, vol. 7, no. 4, pp. 204–211.

    Google Scholar 

  • Nédélec, P., Cammas, J.P., Thouret, V., Athier, G., and Cousin, J.M., An improved infrared carbon monoxide analyser for routine measurements aboard commercial Airbus aircraft: Technical validation and first scientific results of the MOZAIC III programme, Atmos. Chem. Phys., 2003, vol. 3, no. 5, pp. 1551–1564.

    Article  Google Scholar 

  • Parrington, M., Palmer, P.I., Henze, D.K., Tarasick, D.W., Hyer, E.J., Owen, R.C., Helmig, D., Clerbaux, C., Bowman, K.W., Deeter, M.N., Barratt, E.M., Coheur, P.-F., Hurtmans, D., Jiang, Z., George, M., and Worden, J.R., The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over north America and the North Atlantic during 2010, Atmos. Chem. Phys., 2012, vol. 12, no. 4, pp. 2077–2098.

    Article  Google Scholar 

  • Polyakov, A.V., Timofeev, Yu.M., and Uspenskii, A.B., Temperature-humidity sounding of the atmosphere from data of satellite IR sounders with high spectral resolution (IRFS-2), Issled. Zemli Kosmosa, 2009, no. 5, pp. 3–10.

    Google Scholar 

  • Polyakov, A.V., Timofeev, Yu.M., and Uspenskii, A.B., Possibilities for determining the content of ozone and trace gases from data of satellite IR sounders with high spectral resolution (IRFS-2), Issled. Zemli Kosmosa, 2010, no. 3, pp. 3–11.

    Google Scholar 

  • Polyakov, A.V., Timofeev, Yu.M., and Kostsov, V.S., Satellite temperature sounding of the atmosphere in cloud conditions, Issled. Zemli Kosmosa, 2012a, no. 5, pp. 37–42.

    Google Scholar 

  • Polyakov, A.V., Timofeev, Yu.M., and Walker, K.A., Comparison of the satellite and ground-based measurements of the hydrogen fluoride content in the atmosphere, Izv., Atmos. Ocean. Phys., 2012b, vol. 49, no. 9, pp. 1002–1005.

    Article  Google Scholar 

  • Pommier, M., Clerbaux, C., Law, K.S., Ancellet, G., Bernath, P., and Coheur, P.-F., Hadji-Lazaro, J., Hurtmans, D., Nédélec, P., Paris, J.-D., Ravetta, F., Ryerson, T.B., Schlager, H., and Weinheimer, A.J., Analysis of IASI tropospheric O3 data over the Arctic during POLARCAT campaigns in 2008, Atmos. Chem. Phys., 2012, vol. 12, no. 16, pp. 7371–7389.

    Article  Google Scholar 

  • Safronov, A.N., Fokeeva, E.V., Rakitin, V.S., Yurganov, L.N., and Grechko, E.I., Carbon monoxide emissions in summer 2010 in the central part of the Russian Plain and estimation of their uncertainties with the use of different land-cover maps, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 9, pp. 925–940.

    Article  Google Scholar 

  • Tanaka, T., Miyamoto, Y., Morino, I., Machida, T., Nagahama, T., Sawa, Y., Matsueda, H., Wunch, D., Kawakami, S., and Uchino, O., Aircraft measurements of carbon dioxide and methane for the calibration of ground-based high-resolution Fourier transform spectrometers and a comparison to GOSAT data measured over Tsukuba and Moshiri, Atmos. Meas. Tech., 2012, vol. 8, no. 5, pp. 2005–2012.

    Google Scholar 

  • Uspenskii, A.B., Kukharsky, A.V., Romanov, S.V., and Rublev, A.N., Monitoring the carbon dioxide mixing ratio in the troposphere and the methane total column over Siberia according to the data of the AIRS and IASI IR sounders, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1097–1103.

    Article  Google Scholar 

  • Zuev, V.E., Belan, B.D., Kabanov, D.M., Kovalevskii, V.K., Luk’yanov, O.Yu., Meleshkin, V.E., Mikushev, M.K., Panchenko, M.V., Penner, I.E., Pokrovskii, E.V., Sakerin, S.M., Terpugova, S.A., Tumakov, A.G., Shamanaev, V.S., and Shcherbatov, A.I., Optik-E AN-30 aircraft laboratory for ecological studies, Opt. Atmos. Okeana, 1992, vol. 5, no. 10, pp. 1012–1021.

    Google Scholar 

  • Zyryanov, D., Foret, G., Eremenk, M., Beekmann, M., Cammas, J.-P., D’Isidoro, M., Elbern, H., Flemming, J., Friese, E., Kioutsioutkis, I., Maurizi, A., Melas, D., Meleux, F., Menut, L., Moinat, P., Peuch, V.-H., Poupkou, A., Razinger, M., Schultz, M., Stein, O., Suttie, A.M., Valdebenito, A., Zerefos, C., Dufour, G., Bergametti, G., and Flaud, J.-M., 3-D evaluation of tropospheric ozone simulations by an ensemble of regional Chemistry Transport Model, Atmos. Chem. Phys., 2012, vol. 12, no. 7, pp. 3219–3240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Belan.

Additional information

Original Russian Text © M.Yu. Arshinov, S.V. Afonin, B.D. Belan, V.V. Belov, Yu.V. Gridnev, D.K. Davydov, P. Nédélec, J.-D. Paris, A.V. Fofonov, 2014, published in Issledovanie Zemli iz Kosmosa, 2014, No. 1, pp. 72–84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshinov, M.Y., Afonin, S.V., Belan, B.D. et al. Comparison between satellite spectrometric and aircraft measurements of the gaseous composition of the troposphere over Siberia during the forest fires of 2012. Izv. Atmos. Ocean. Phys. 50, 916–928 (2014). https://doi.org/10.1134/S0001433814090047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433814090047

Keywords

Navigation