Skip to main content
Log in

Coupled Earth’s Thermosohere-Ionosphere Global Dynamics Model

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A coupled Earth’s thermosohere-ionosphere global dynamics model (for altitudes of 90–500 km) is presented. This model is based on a three-dimensional thermospheric general circulation model and a dynamical model of the ionospheric F-layer, which takes into account plasma-chemical processes, ambipolar diffusion, and advective ion transport due to neutral wind. General upper atmosphere characteristics have adequately been reproduced and the thermosphere–ionosphere interaction has quantitatively been estimated based on this coupled model. The sensitivity of thermospheric characteristics to ionospheric parameters and the sensitivity of the electron-concentration field distribution in the ionospheric F-layer to thermospheric parameters have been studied within a specified diurnal cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. V. Kulyamin and V. P. Dymnikov, “A three-dimensional model of general thermospheric circulation,” Russ. J. Numer. Anal. Math. Modell. 28 (4), 353–380 (2013).

    Article  Google Scholar 

  2. D. V. Kulyamin, V. Ya. Galin, and A. I. Pogoreltsev, “The thermosphere general circulation modeling with the parametrization of radiative processes,” Russ Meteorol. Hydrol. 40, 392–399 (2015).

    Article  Google Scholar 

  3. D. V. Kulyamin, P. A. Ostanin, and V. P. Dymnikov, “Modeling the F-layer of the Earth’s ionosphere. Solving the ambipolar diffusion equations,” Mat. Model. 31 (4), 57–74 (2019).

    Google Scholar 

  4. D. V. Kulyamin and V. P. Dymnikov, “Modeling of the lower ionosphere climate,” Izv., Atmos. Oceanic Phys. 51, 272–291 (2015).

    Article  Google Scholar 

  5. D. V. Kulyamin and E. M. Volodin, “INM RAS coupled atmosphere–ionosphere general circulation model INMAIM (0–130 km),” Russ. J. Numer. Anal. Math. Modell. 33 (6), 351–357 (2018).

    Article  Google Scholar 

  6. R. W. Schunk and A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge University Press, London, 2009).

    Book  Google Scholar 

  7. M. C. Kelley, The Earth’s Ionosphere, vol. 43 of Int. Geophys. Ser. (Academic Press, San Diego, CA, 1989).

  8. E. Yigit et al., “A review of vertical coupling in the atmosphere–ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity,” J. Atmos. Sol.-Terr. Phys. 141, 1–12 (2016).

    Article  Google Scholar 

  9. R. W. Schunk, Solar Terrestrial Energy Program (STEP): Handbook of Ionospheric Models (Center for Atmospheric and Space Sciences, Logan, UT, USA, 1996).

    Google Scholar 

  10. A. D. Richmond, E. C. Ridley, and R. G. Roble, “A thermosphere/ionosphere general circulation model with coupled electrodynamics,” Geophys. Res. Lett. 19 (6), 601–604 (1992).

    Article  Google Scholar 

  11. S. E. McDonald, F. Sassi, and A. J. Mannucci, “SAMI-3/SD-WACCM-X simulations of ionospheric variability during Northern winter 2009,” Space Weather 13 (9), 568–584 (2015).

    Article  Google Scholar 

  12. T. J. Fuller-Rowell et al., “Dynamics of the low-latitude thermosphere: quiet and disturbed conditions,” J. Atmos. Terr. Phys. 59 (13), 1533–1540 (1997).

    Article  Google Scholar 

  13. H. Wang et al., “First forecast of a sudden stratospheric warming with a coupled whole atmosphere/ionosphere model IDEA,” J. Geophys. Res.: Space Phys. 119 (3), 2079–2089 (2014).

    Article  Google Scholar 

  14. F. S. Bessarab et al., “E-region ionospheric storm on May 1–3, 2010: GSM TIP model representation and suggestions for IRI improvement,” Adv. Space Res. 55 (8), 2124–2130 (2015).

    Article  Google Scholar 

  15. A. V. Tashchilin and E. B. Romanova, “Numerical modeling of ionospheric plasma diffusion in the dipole geomagnetic field with a transversal drift,” Mat. Model. 25 (1), 3–17 (2013).

    Google Scholar 

  16. S. A. Ishanov et al., “α-β” Iteration algorithm in problems of ionosphere plasma modeling,” Mat. Model. 21 (1), 33–45 (2009).

    Google Scholar 

  17. V. M. Goloviznin et al., New Algorithms of Computational Hydrodynamics for Multicore Computer Systems (Izd-vo Mosk. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  18. S. V. Kostrykin, D. V. Kulyamin, P. A. Ostanin, and V. P. Dymnikov, “A model of the F-layer of the Earth’s ionosphere based on transfer and ambipolar diffusion equations,” Mat. Model. (2020) (in press).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 17-17-01305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kulyamin.

Additional information

Translated by B. Dribinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dymnikov, V.P., Kulyamin, D.V. & Ostanin, P.A. Coupled Earth’s Thermosohere-Ionosphere Global Dynamics Model. Izv. Atmos. Ocean. Phys. 56, 241–252 (2020). https://doi.org/10.1134/S0001433820030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820030068

Keywords:

Navigation