Skip to main content
Log in

Combined Effect of Salicylic Acid and Nitrogen Oxide Donor on Stress-Protective System of Wheat Plants under Drought Conditions

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Presowing treatment of wheat (Triticum aestivum L.) seeds with 10 or 100 μM salicylic acid (SA) reduced the inhibition of 14-day-old plant growth under soil drought. The same effect was caused by the spraying of 7-day-old seedlings with 0.5 or 2 mM nitrogen oxide donor (sodium nitroprusside, SNP) before drought. The protective effect was enhanced by the combination of seed treatment with 10 μM SA and plant spraying with 0.5 mM SNP, while their combinations in higher concentrations caused weaker effects. SA treatment in both concentrations and 0.5 mM SNP under drought conditions increased the antioxidant enzyme activity (superoxide dismutase, catalase, and guaiacol peroxidase) in leaves. This effect was especially significant when 10 μM SA was combined with 0.5 mM SNP. Spraying with 2 mM SNP and its combination with seed presowing with 100 μM SA did not significantly change the antioxidant enzyme activity; however, the proline content in the leaves increased. It is concluded that the SA stress-protective action on plants can be modified with exogenous nitrogen oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nawaz, F., Shabbir, R.N., Shahbaz, M., Majeed, S., Raheel, M., Hassan, W., and Sohail, M.A., in Phytohormones, Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses, El-Esawi, M., Ed., InTech, 2017, pp. 117–141.

  2. Siddiqui, M.H., Al-Whaibi, M.H., and Basalah, M.O., Protoplasma, 2011, vol. 248, no. 3, pp. 447–455.

    Article  PubMed  CAS  Google Scholar 

  3. Glyan’ko, A.K., Mitanova, N.B., and Stepanov, A.V., Appl. Biochem. Microbiol., 2012, vol. 48, no. 1, pp. 83–89.

    Article  CAS  Google Scholar 

  4. Hamayun, M., Khan, A.L., Ahmad, N., Lee, I.J., Khan, S.A., and Shinwari, Z.K., Pak. J. Bot., 2010, vol. 42, no. 2, pp. 977–986.

    CAS  Google Scholar 

  5. Rakhmankulova, Z.F., Fedyaev, V.V., Rakhmatullina, S.R., Ivanov, S.P., Gil’vanova, I.R., and Usmanov, I.Yu., Russ. J. Plant Physiol., 2010, vol. 57, no. 6, pp. 778–783.

    Article  CAS  Google Scholar 

  6. Agarwal, S., Sairam, R.K., Srivastava, G.C., and Meena, R.C., Biol. Plant., 2005, vol. 49, no. 4, pp. 541–550.

    Article  CAS  Google Scholar 

  7. Karpets, Yu.V., Kolupaev, Yu.E., Yastreb, T.O., and Oboznyi, A.I., Russ. J. Plant Physiol., 2015, vol. 62, no. 3, pp. 292–298.

    Article  CAS  Google Scholar 

  8. Kovacs, I., Durner, J., and Lindermayr, C., New Phytol., 2015, vol. 208, no. 3, pp. 860–872.

    Article  PubMed  CAS  Google Scholar 

  9. Liu, X., Zhang, S., and Lou, C., Chinese Sci. Bull., 2003, vol. 48, no. 5, pp. 449–452.

    CAS  Google Scholar 

  10. Tewari, R.K. and Paek, K.Y., J. Plant Growth Regul., 2011, vol. 30, no. 4, pp. 396–404.

    Article  CAS  Google Scholar 

  11. Karpets, Yu.V., Kolupaev, Yu.E., and Kosakovskaya, I.V., Fiziol. Rast. Genet., 2016, vol. 48, no. 2, pp. 158–166.

    Google Scholar 

  12. Mostofa, M.G., Fujita, M., and Tran, L.S.P., Plant Growth Regul., 2015, vol. 77, no. 3, pp. 265–277.

    Article  CAS  Google Scholar 

  13. Alavi, S.M.N., Arvin, M.J., and Kalantari, K.M., J. Plant Interact., 2014, vol. 9, no. 1, pp. 683–688.

    Article  CAS  Google Scholar 

  14. Gémes, K., Poór, P., Horváth, E., Kolbert, Z., Szopkó, D., Szepesi, A., and Tari, I., Physiol. Plant., 2011, vol. 142, no. 2, pp. 179–192.

    Article  PubMed  CAS  Google Scholar 

  15. Song, F. and Goodman, R.M., Mol. Plant–Microbe Interact., 2001, vol. 14, no. 12, pp. 1458–1462.

    Article  PubMed  CAS  Google Scholar 

  16. Yastreb, T.O., Karpets, Yu.V., Kolupaev, Yu.E., and Dmitriev, A.P., Cytol. Genet., 2017, vol. 51, no. 2, pp. 134–141.

    Article  Google Scholar 

  17. Klessing, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M., Shan, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E., and Silva, H., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 97, no. 16, pp. 8849–8855.

    Article  Google Scholar 

  18. Siddiqui, M.H., Al-Whaibi, M.H., Ali, H.M., Sakran, A.M., Basalah, M.O., and AlKhaishany, M.Y.Y., Austral. J. Crop Sci., 2013, vol. 7, no. 11, pp. 1780–1788.

    Google Scholar 

  19. Esim, N. and Atici, Ö., Front. Life Sci., 2015, vol. 8, no. 2, pp. 124–130.

    Article  CAS  Google Scholar 

  20. Yan, F., Liu, Y., Sheng, H., Wang, Y., Kang, H., and Zeng, J., Biol. Plant., 2016, vol. 60, no. 4, pp. 686–694.

    Article  CAS  Google Scholar 

  21. Basalah, M.O., Ali, H.M., Al-Whaibi, M.H., Siddiqui, M.H., Sakran, A.M., and Al Sahli, A.A., J. Pure Appl. Microbiol., 2013, vol. 7, pp. 139–148.

    CAS  Google Scholar 

  22. Shakirova, F.M., Bezrukova, M.V., and Sakhabutdinova, A.R., Agrokhimiya, 2000, no. 5, pp. 52–56.

    Google Scholar 

  23. Sagisaka, S., Plant Physiol., 1976, vol. 57, no. 2, pp. 308–309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kolupaev, Yu.E., Ryabchun, N.I., Vainer, A.A., Yastreb, T.O., and Oboznyi, A.I., Russ. J. Plant Physiol., 2015, vol. 62, no. 4, pp. 499–506.

    Article  CAS  Google Scholar 

  25. Yastreb, T.O., Kolupaev, Yu.E., Lugovaya, A.A., and Dmitriev, A.P., Appl. Biochem. Microbiol., 2017, vol. 53, no. 6, pp. 719–724.

    Article  CAS  Google Scholar 

  26. Gil’vanova, I.R., Enikeev, A.R., Stepanov, S.Yu., and Rakhmankulova, Z.F., Appl. Biochem. Microbiol., 2012, vol. 48, no. 1, pp. 90–94.

    Article  CAS  Google Scholar 

  27. Karpets, Yu.V. and Kolupaev, Yu.E., Visn. Kharkiv. Nats. Agrarn. Univ., Ser. Biol., 2017, no. 2 (41), pp. 6–31.

    Google Scholar 

  28. Radyukina, N.L., Shashukova, A.V., Makarova, S.S., and Kuznetsov, Vl.V., Russ. J. Plant Physiol., 2011, vol. 58, no. 1, pp. 51–59.

    Article  CAS  Google Scholar 

  29. Durner, J., Wendehenne, D., and Klessig, D.F., Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 17, pp. 10328–10333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Maslennikova, D.R., Allagulova, Ch.R., Fedorova, K.A., Plotnikov, A.A., Aval’baev, A.M., and Shakirova, F.M., Russ. J. Plant Physiol, 2017, vol. 64, no. 5, pp. 665–671.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Kolupaev.

Additional information

Original Russian Text © Yu.E. Kolupaev, Yu.V. Karpets, T.O. Yastreb, A.A. Lugovaya, 2018, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2018, Vol. 54, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolupaev, Y.E., Karpets, Y.V., Yastreb, T.O. et al. Combined Effect of Salicylic Acid and Nitrogen Oxide Donor on Stress-Protective System of Wheat Plants under Drought Conditions. Appl Biochem Microbiol 54, 418–424 (2018). https://doi.org/10.1134/S0003683818040099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818040099

Keywords

Navigation