Skip to main content
Log in

Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Parameters of chlorophyll fluorescence induction (CFI) are widely used for assessment of the physiological state of higher plant leaves in biochemical, physiological, and ecological studies and in agricultural applications. In this work we have analyzed data on variability of some CFI parameters — Φ maxPSII = F v/F m (relative value of variable fluorescence), q NPQ (non-photochemical quenching coefficient), R Fd (“vitality index”) — in autumnal leaves of ten arboreous plant species of the temperate climatic zone. The correlation between the chlorophyll content in the leaves and fluorescence parameters characterizing photosynthetic activity is shown for two representative species, the small-leaved linden Tilia cordata and the rowan tree Sorbus aucuparia. During the period of mass yellowing of the leaves, the Φ maxPSII value can be used as an adequate characteristic of their photochemical activity, while in summer the q NPQ or R Fd values are more informative. We have established a correlation between the Φ maxPSII value, which characterizes the maximal photochemical activity of the photosystem II, and “chromaticity coordinates” of a leaf characterizing its color features. The chromaticity coordinates determined from the optical reflection spectra of the leaves serve as a quantitative measure of their hues, and this creates certain prerequisites for a visual expert assessment of the physiological state of the leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Car:

carotenoids

CFI:

chlorophyll fluorescence induction

Chl:

chlorophyll

CIE:

International Commission on Illumination (fr. Commission internationale de l’éclairage)

NPQ:

non-photochemical quenching

PSI:

photosystem I

PSII:

photosystem II

PSA:

photosynthetic apparatus

q NPQ :

non-photochemical fluorescence quenching coefficient, q NPQ = = (F mF m′)/F m

R Fd :

“vitality index”, R Fd = (F MF T)/F T

ΦPSII :

efficiency of PSII photochemical activity, Φ PSII = (F m′ − F′)/F m

Φ st.st.PSII :

steady-state value of the PSII photochemical activity

Φ maxPSII :

maximal efficiency of PSII photochemical activity, Φ maxPSII = F v/F m

References

  1. Venediktov, P. S., Volgin, S. L., Kazimirko, Y. V., Krendeleva, T. E., Kukarskikh, G. P., Makarova, V. V., Lavrukhina, O. G., Pogosyan, S. I., Yakovleva, O. V., and Rubin, A. B. (1999) Biofizika, 44, 1037–1047.

    CAS  Google Scholar 

  2. Rubin, A. B. (2005) Tekhnol. Zhivykh Sistem, 2, 47–68.

    Google Scholar 

  3. Karapetyan, N. V., and Bukhov, N. G. (1986) Soviet Plant Physiol., 33, 1013–1026.

    CAS  Google Scholar 

  4. Kalaji, H. M., Goltsev, V., Bosa, K., Allakhverdiev, S. I., and Strasser, R. J. (2012) Photosynth. Res., 114, 69–96.

    Article  CAS  PubMed  Google Scholar 

  5. Rabinowitch, E. I. (1951) Photosynthesis and Related Processes, Vol. II, Interscience Publishers, Inc., New York-London.

    Google Scholar 

  6. Govindjee (1995) Austral. J. Plant Physiol., 22, 131–160.

    Article  CAS  Google Scholar 

  7. Adams, W. W., III, and Demmig-Adams, B. (2004) in Chlorophyll and Fluorescence, Springer, pp. 583–604.

    Book  Google Scholar 

  8. Maxwell, K., and Johnson, G. N. (2000) J. Exp. Bot., 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  9. Baker, N. R. (2008) Annu. Rev. Plant Biol., 59, 89–113.

    Article  CAS  PubMed  Google Scholar 

  10. Ptushenko, V. V., Ptushenko, E. A., Samoilova, O. P., and Tikhonov, A. N. (2013) Biosystems, 114, 85–97.

    Article  CAS  PubMed  Google Scholar 

  11. Samoilova, O. P., Ptushenko, V. V., Kuvykin, I. V., Kiselev, S. A., Ptushenko, O. S., and Tikhonov, A. N. (2011) Biosystems, 105, 41–48.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y. F., Qi, M. F., and Li, T. L. (2012) Plant Sci., 196, 8–17.

    Article  CAS  PubMed  Google Scholar 

  13. Buonasera, K., Lambreva, M., Rea, G., Touloupakis, E., and Giardi, M. T. (2011) Anal. Bioanal. Chem., 401, 1139–1151.

    Article  CAS  PubMed  Google Scholar 

  14. Kautsky, H., and Hirsch, A. (1931) Naturwissenschaften, 19, 964.

    Article  CAS  Google Scholar 

  15. Schreiber, U., Schliwa, U., and Bilger, W. (1986) Photosynth. Res., 10, 51–62.

    Article  CAS  PubMed  Google Scholar 

  16. Kirzhanov, D. V., and Kukushkin, A. K. (2009) Vestnik Mosk. Univer. Ser. 3. Fiz. Astron., 6, 65–69.

    Google Scholar 

  17. Tikhonov, A. N. (2013) Photosynth. Res., 116, 511–534.

    Article  CAS  PubMed  Google Scholar 

  18. Bilger, W., and Bjorkman, O. (1994) Planta, 193, 238–246.

    Article  CAS  Google Scholar 

  19. Krasnovsky, A. A., Jr. (2007) Biochemistry (Moscow), 72, 1065–1080.

    Article  CAS  Google Scholar 

  20. Krasnovsky, A. A., Jr. (1998) Membr. Cell Biol., 12, 665–690.

    PubMed  Google Scholar 

  21. Krieger-Liszkay, A. (2005) J. Exp. Bot., 56, 337–346.

    Article  CAS  PubMed  Google Scholar 

  22. Demmig-Adams, B., Cohu, C. M., Muller, O., and Adams, W. W., III (2012) Photosynth. Res., 113, 75–88.

    Article  CAS  PubMed  Google Scholar 

  23. Lambrev, P. H., Miloslavina, Y., Jahns, P., and Holzwarth, A. R. (2012) Biochim. Biophys. Acta — Bioenerg., 1817, 760–769.

    Article  CAS  Google Scholar 

  24. Muller, P., Li, X.-P., and Niyogi, K. K. (2001) Plant Physiol., 125, 1558–1566.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Heber, U., Lange, O. L., and Shuvalov, V. A. (2006) J. Exp. Bot., 57, 1211–1223.

    Article  CAS  PubMed  Google Scholar 

  26. Lichtenthaler, H. K., Buschmann, C., Rinderle, U., and Schmuck, G. (1986) Radiat. Environ. Biophys., 25, 297–308.

    Article  CAS  PubMed  Google Scholar 

  27. Lichtenthaler, H. K., Buschmann, C., and Knapp, M. (2005) Photosynthetica, 43, 379–393.

    Article  CAS  Google Scholar 

  28. Karavaev, V. A., Polyakova, I. B., Solntsev, M. K., and Yurina, T. P. (1998) J. Luminescence, 76, 335–338.

    Article  Google Scholar 

  29. Ptushenko, V. V., Karavaev, V. A., Solntsev, M. K., and Tikhonov, A. N. (2013) Biophysics (Moscow), 58, 228–233.

    Article  CAS  Google Scholar 

  30. Strasser, R. J., Tsimilli-Michael, M., and Srivastava, A. (2004) in Chlorophyll and Fluorescence, Springer, pp. 321–362.

    Book  Google Scholar 

  31. Rohacek, K. (2002) Photosynthetica, 40, 13–29.

    Article  CAS  Google Scholar 

  32. Lichtenthaler, H. K. (1987) J. Plant Physiol., 131, 101–110.

    Article  CAS  Google Scholar 

  33. Lu, C., and Zhang, J. (1998) Physiol. Plant., 104, 239–247.

    Article  CAS  Google Scholar 

  34. Adams, W. W., Winter, K., Schreiber, U., and Schramel, P. (1990) Plant Physiol., 92, 1184–1190.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Merzlyak, M. N., Solovchenko, A. E., and Gitelson, A. A. (2003) Postharvest Biol. Technol., 27, 197–211.

    Article  CAS  Google Scholar 

  36. Merzlyak, M. N., Solovchenko, A. E., Smagin, A. I., and Gitelson, A. A. (2005) J. Plant Physiol., 162, 151–160.

    Article  CAS  PubMed  Google Scholar 

  37. Solovchenko, A. (2010) Photoprotection in Plants: Optical Screening-Based Mechanisms, Vol. 14, Springer.

    Book  Google Scholar 

  38. Djudd, D., and Vishecky, G. (1975) Color in Business, Science and Industry, John Wiley & Sons, New York-London-Sydney-Toronto.

    Google Scholar 

  39. Lichtenthaler, H. K. (1987) Methods Enzymol., 148, 350–382.

    Article  CAS  Google Scholar 

  40. Bjorkman, O., and Demmig, B. (1987) Planta, 170, 489–504.

    Article  CAS  PubMed  Google Scholar 

  41. Johnson, G. N., Young, A. J., Scholes, J. D., and Horton, P. (1993) Plant Cell Environ., 16, 673–679.

    Article  CAS  Google Scholar 

  42. MacAdam, D. L. (1942) J. Opt. Soc. Am., 32, 247–273.

    Article  Google Scholar 

  43. MacAdam, D. L. (1943) J. Opt. Soc. Am., 33, 18–26.

    Article  Google Scholar 

  44. Genty, B., Briantais, J.-M., and Baker, N. R. (1989) Biochim. Biophys. Acta, 990, 87–92.

    Article  CAS  Google Scholar 

  45. Fryer, M. J., Andrews, J. R., Oxborough, K., Blowers, D. A., and Baker, N. R. (1998) Plant Physiol., 116, 571–580.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lazar, D. (2003) J. Theor. Biol., 220, 469–503.

    Article  CAS  PubMed  Google Scholar 

  47. Zivcak, M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H. M., Yang, X., and Allakhverdiev, S. I. (2013) Photosynth. Res., 117, 529–546.

    Article  CAS  PubMed  Google Scholar 

  48. Krasnovsky, A. A., and Brin, G. P. (1947) Dokl. Akad. Nauk SSSR, 58, 1087–1090.

    Google Scholar 

  49. Krasnovsky, A. A. (1948) Dokl. Akad. Nauk SSSR, 61, 91–94.

    Google Scholar 

  50. Shuvalov, V. A., and Heber, U. (2003) Chem. Phys., 294, 227–237.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ptushenko.

Additional information

Original Russian Text © V. V. Ptushenko, O. S. Ptushenko, A. N. Tikhonov, 2014, published in Biokhimiya, 2014, Vol. 79, No. 3, pp. 338–352

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ptushenko, V.V., Ptushenko, O.S. & Tikhonov, A.N. Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants. Biochemistry Moscow 79, 260–272 (2014). https://doi.org/10.1134/S0006297914030122

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914030122

Key words

Navigation