Skip to main content
Log in

Neurotoxic non-proteinogenic amino acid β-N-methylamino-L-alanine and its role in biological systems

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Secondary metabolites of photoautotrophic organisms have attracted considerable interest in recent years. In particular, molecules of non-proteinogenic amino acids participating in various physiological processes and capable of producing adverse ecological effects have been actively investigated. For example, the non-proteinogenic amino acid β-Nmethylamino-L-alanine (BMAA) is neurotoxic to animals including humans. It is known that BMAA accumulation via the food chain can lead to development of neurodegenerative diseases in humans such as Alzheimer’s and Parkinson’s diseases as well as amyotrophic lateral sclerosis. Moreover, BMAA can be mistakenly incorporated into a protein molecule instead of serine. Natural sources of BMAA and methods for its detection are discussed in this review, as well as the role of BMAA in metabolism of its producers and possible mechanisms of toxicity of this amino acid in different living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vranova, V., Rejsek, K., Skene, K. R., and Formanek, P. (2011) Non-protein amino acids: plant, soil and ecosystem interactions, Plant Soil, 342, 31–48.

    CAS  Google Scholar 

  2. Zhang, F. S., Treeby, M., Romheld, V., and Marschner, H. (1991) Mobilization of iron by phytosiderophores as affected by other micronutrients, Plant Soil, 130, 173–178.

    Article  CAS  Google Scholar 

  3. Shenker, M., Fan, T. W. M., and Crowley, D. E. (2001) Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants, J. Environ. Qual., 30, 2091–2098.

    Article  CAS  PubMed  Google Scholar 

  4. Casagrande, D. J., and Given, P. H. (1980) Geochemistry of amino acids in some Florida peat accumulation-II. Amino acid distributions, Geochim. Cosmochim. Acta, 44, 1493–1507.

    Article  CAS  Google Scholar 

  5. Kvenvolden, K. A., Lawless, J. G., and Ponnamperuma, C. (1971) Nonprotein amino acids in the Murchison meteorite, Proc. Natl. Acad. Sci. USA, 68, 486–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vega, A., and Bell, E. A. (1967) α-Amino-ß-methylaminopropionic acid, a new amino acid from seeds of Cycas circinalis, Phytochemistry, 6, 759–762.

    CAS  Google Scholar 

  7. Spencer, P. S., Nunn, P. B., Hugon, J., Ludolph, A. C., Ross, S. M., Roy, D. N., and Robertson, R. C. (1987) Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin, Science, 237, 517–522.

    Article  CAS  PubMed  Google Scholar 

  8. Bradley, W. G., and Mash, D. C. (2009) Beyond Guam: The cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases, Amyotroph. Lateral Scler., 10, 7–20.

    Article  CAS  PubMed  Google Scholar 

  9. Cox, P. A., Banack, S. A., and Murch, S. J. (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam, Proc. Natl. Acad. Sci. USA, 100, 13380–13383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koksharova, O. A. (2010) Application of molecular genetic and microbiological techniques in ecology and biotechnology of cyanobacteria, Microbiology, 79, 721–734.

    Article  CAS  Google Scholar 

  11. Murch, S. J., Cox, P. A., and Banack, S. A. (2004) A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam, Proc. Natl. Acad. Sci. USA, 101, 12228–12231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Esterhuizen, M., and Downing, T. G. (2008) ß-N-methylamino-L-alanine (BMAA) in novel South African cyanobacterial isolates, Ecotoxicol. Environ. Saf., 71, 309–313.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, H. E., King, S. R., Banack, S. A., Webster, C., Callanaupa, W. J., and Cox, P. A. (2008) Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA, J. Ethnopharmacol., 118, 159–165.

    Article  CAS  PubMed  Google Scholar 

  14. Brand, L. E., Pablo, J., Compton, A., Hammerschlag, N., and Mash, D. C. (2010) Cyanobacterial blooms and the occurrence of the neurotoxin beta-N-methylamino-L-alanine (BMAA) in South Florida aquatic food webs, Harmful Algae, 9, 620–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jonasson, S., Eriksson, J., Berntzon, L., Spacil, Z., Ilag, L. L., Ronnevi, L. O., Rasmussen, U., and Bergman, B. (2010) Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure, Proc. Natl. Acad. Sci. USA, 107, 9252–9257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Contardo-Jara, V., Schwanemann, T., and Pflugmacher, S. (2014) Uptake of a cyanotoxin, ß-N-methylamino-L-alanine, by wheat (Triticum aestivum), Ecotoxicol. Environ., 104, 127–131.

    Article  CAS  Google Scholar 

  17. Cervantes Cianca, R. C., Baptista, M. S., Lopes, V. R., and Vasconcelos, V. M. (2012) The non-protein amino acid ßN-methylamino-L-alanine in Portuguese cyanobacterial isolates, Amino Acids, 42, 2473–2479.

    Article  CAS  PubMed  Google Scholar 

  18. Metcalf, J. S., Banack, S. A., Lindsay, J., Morrison, L. F., Cox, P. A., and Codd, G. A. (2008) Co-occurrence of betaN-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990-2004, Environ. Microbiol., 10, 702–708.

    Article  CAS  PubMed  Google Scholar 

  19. Banack, S. A., Johnson, H. E., Cheng, R., and Cox, P. A. (2007) Production of the neurotoxin BMAA by a marine cyanobacterium, Mar. Drugs, 5, 180–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cox, P. A., Banack, S. A., Murch, S. J., Rasmussen, U., Tien, G., Bidigare, R. R., Metcalf, J. S., Morrison, L. F., Codd, G. A., and Bergman, B. (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid, Proc. Natl. Acad. Sci. USA, 102, 5074–5078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Downing, S., Banack, S. A., Metcalf, J. S., Cox, P. A., and Downing, T. G. (2011) Nitrogen starvation of cyanobacteria results in the production of ß-N-methylamino-L-alanine, Toxicon, 58, 187–194.

    Article  CAS  PubMed  Google Scholar 

  22. Spacil, Z., Eriksson, J., Jonasson, S., Rasmussen, U., Ilag, L. L., and Bergman, B. (2009) Analytical protocol for identification of BMAA and DAB in biological samples, Analyst, 135, 127–132.

    Article  PubMed  Google Scholar 

  23. Jiang, L., Eriksson, J., Lage, S., Jonasson, S., Shams, S., Mehine, M., Ilag, L. L., and Rasmussen, U. (2014) Diatoms: a novel source for the neurotoxin BMAA in aquatic environments, PLoS One, 9, doi: 10.1371/journal.pone.0084578.

  24. Lage, S., Costa, P. R., Moita, T., Eriksson, J., Rasmussen, U., and Rydberg, S. J. (2014) BMAA in shellfish from two Portuguese transitional water bodies suggests the marine dinoflagellate Gymnodinium catenatum as a potential BMAA source, Aquat. Toxicol., 152C, 131–138.

    Article  CAS  Google Scholar 

  25. Faassen, E. J. (2014) Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins, 6, 1109–1138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Marler, T. E., Snyder, L. R., and Shaw, C. A. (2010) Cycas micronesica (Cycadales) plants devoid of endophytic cyanobacteria increase in ß-methylamino-L-alanine, Toxicon, 56, 563–568.

    Article  CAS  PubMed  Google Scholar 

  27. Faaßsen, E. J., Gillissen, F., Zweers, H. A. J., and Lurling, M. (2009) Determination of the neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (α,γ-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms Amyotroph. Lateral Scler., 10, 79–84.

    Article  CAS  Google Scholar 

  28. Rosen, J., and Hellenas, K. E. (2008) Determination of the neurotoxin BMAA (beta-N-methylamino-L-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry), Analyst, 133, 1785–1789.

    Article  CAS  PubMed  Google Scholar 

  29. Duncan, M. W. (1991) Role of the cycad neurotoxin BMAA in the amyotrophic lateral sclerosis–parkinsonism dementia complex of the western Pacific, Adv. Neurol., 56, 301–310.

    CAS  PubMed  Google Scholar 

  30. Guo, T., Geis, S., Hedman, C., Arndt, M., Krick, W., and Sonzogni, W. (2007) Characterization of ethyl chloroformate derivative of beta-methylamino-L-alanine, J. Am. Soc. Mass. Spectr., 18, 817–825.

    Article  CAS  Google Scholar 

  31. Pan, M., Mabry, T. J., Cao, P., and Moini, M. (1997) Identification of nonprotein amino acids from cycad seeds as N-ethoxycarbonyl ethyl ester derivatives by positive chemical-ionization gas chromatography-mass spectrometry, J. Chromatogr. A, 787, 288–294.

    Article  CAS  PubMed  Google Scholar 

  32. Baptista, M. S., Cianca, R. C., Lopes, V. R., Almeida, C. M., and Vasconcelos, V. M. (2011) Determination of the nonprotein amino acid beta-N-methylamino-l-alanine in estuarine cyanobacteria by capillary electrophoresis, Toxicon, 58, 410–414.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang, L., Johnston, E., Aberg, K. M., Nilsson, U., and Ilag, L. L. (2013) Strategy for quantifying trace levels of BMAA in cyanobacteria by LC/MS/MS, Anal. Bioanal. Chem., 405, 1283–1292.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang, L., Kiselova, N., Rosen, J., and Ilag, L. L. (2014) Quantification of neurotoxin BMAA (ß-N-methylaminoL-alanine) in seafood from Swedish markets, Sci. Rep., 4, doi: 10.1038/srep06931.

  35. Downing, S., Contardo-Jara, V., Pflugmacher, S., and Downing, T. G. (2014) The fate of the cyanobacterial toxin ß-N-methylamino-L-alanine in freshwater mussels, Ecotoxicol. Environ. Saf., 101, 51–58.

    Article  CAS  PubMed  Google Scholar 

  36. Esterhuizen-Londt, M., Pflugmacher, S., and Downing, T. G. (2011) The effect of ß-N-methylamino-L-alanine (BMAA) on oxidative stress response enzymes of the macrophyte Ceratophyllum demersum, Toxicon, 57, 803–810.

    Article  CAS  PubMed  Google Scholar 

  37. Salomonsson, M., Hansson, A., and Bondesson, U. (2013) Development and in-house validation of a method for quantification of BMAA in mussels using dansyl chloride derivatization and ultra-performance liquid chromatography tandem mass spectrometry, Anal. Methods, 5, 4865–4874.

    Article  CAS  Google Scholar 

  38. Faassen, E. J., Gillissen, F., and Lurling, M. (2012) A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria, PLoS One, 7, doi: 10.1371/journal.pone.0036667.

  39. Mondo, K., Broc Glover, W., Murch, S. J., Liu, G., Cai, Y., Davis, D. A., and Mash, D. C. (2014) Environmental neurotoxins beta-N-methylamino-l-alanine (BMAA) and mercury in shark cartilage dietary supplements, Food Chem. Toxicol., 70, 26–32.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang, L., Aigret, B., De Borggraeve, W. M., Spacil, Z., and Ilag, L. L. (2012) Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples, Anal. Bioanal. Chem., 403, 1719–1730.

    Article  CAS  PubMed  Google Scholar 

  41. Glover, W. B., Liberto, C. M., McNeil, W. S., Banack, S. A., Shipley, P. R., and Murch, S. J. (2012) Reactivity of ßmethylamino-L-alanine in complex sample matrixes complicating detection and quantification by mass spectrometry, Anal. Chem., 84, 7946–7953.

    Article  CAS  PubMed  Google Scholar 

  42. Banack, S. A., and Cox, P. A. (2003) Distribution of the neurotoxic nonprotein amino acid BMAA in Cycas micronesica, Bot. J. Linn. Soc., 143, 165–168.

    Article  Google Scholar 

  43. Banack, S. A., Metcalf, J. S., Spacil, Z., Downing, T. G., Downing, S., Long, A., Nunn, P. B., and Cox, P. A. (2011) Distinguishing the cyanobacterial neurotoxin beta-Nmethylamino-L-alanine (BMAA) from other diamino acids, Toxicon, 57, 730–738.

    Article  CAS  PubMed  Google Scholar 

  44. Cohen, S. A. (2012) Analytical techniques for the detection of alpha-amino-beta-methylaminopropionic acid, Analyst, 137, 1991–2005.

    Article  CAS  PubMed  Google Scholar 

  45. Lage, S., Burian, A., Rasmussen, U., Costa, P. R., Annadotter, H., Godhe, A., and Rydberg, S. (2016) BMAA extraction of cyanobacteria samples: which method to choose? Environ. Sci. Pollut. Res. Int., 23, 338–350.

    Article  CAS  PubMed  Google Scholar 

  46. Moura, S., De Almeida Ultramari, M., Mendes Louzada de Paula, D., Yonamine, M., and Pinto, E. (2009) 1H NMR determination of ß-N-methylamino-l-alanine (lBMAA) in environmental and biological samples, Toxicon, 53, 578–583.

    Article  CAS  PubMed  Google Scholar 

  47. Brenner, E. D., Stevenson, D. W., McCombie, R. W., Katari, M. S., Rudd, S. A., Mayer, K. F., Palenchar, P. M., Runko, S. J., Twigg, R. W., Dai, G., Martienssen, R. A., Benfey, P. N., and Coruzzi, G. M. (2003) Expressed sequence tag analysis in Cycas, the most primitive living seed plant, Genome Biol., 18, r78.

    Article  Google Scholar 

  48. Downing, S., Esterhuizen-Londt, M., and Downing, T. G. (2015) ß-N-methylamino-L-alanine (BMAA) metabolism in the aquatic macrophyte Ceratophyllum demersum, Ecotoxicol. Environ. Saf., 120, 88–92.

    Article  CAS  PubMed  Google Scholar 

  49. Coleman, J., Blake-Kalff, M., and Davies, E. (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation, Trends Plant Sci., 2, 144–151.

    Article  Google Scholar 

  50. Brenner, E. D., Martinez-Barboza, N., Clark, A. P., Liang, Q. S., Stevenson, D. W., and Coruzzi, G. M. (2000) Arabidopsis mutants resistant to S(+)-beta-methyl-alpha, beta-diaminopropionic acid, a cycad-derived glutamate receptor agonist, Plant Physiol., 124, 1615–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baines, S. B., Fisher, N. S., and Cole, J. J. (2005) Uptake of dissolved organic matter (DOM) and its importance to metabolic requirements of the zebra mussel, Dreissena polymorpha, Limnol. Oceanogr., 50, 36–47.

    Article  CAS  Google Scholar 

  52. Peuthert, A., Chakrabarti, S., and Pflugmacher, S. (2007) Uptake of microcystins-LR and -LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation), Environ. Toxicol., 22, 436–442.

    Article  CAS  PubMed  Google Scholar 

  53. Tegeder, M. (2012) Transporters for amino acids in plant cells: some functions and many unknowns, Curr. Opin. Plant Biol., 15, 315–321.

    Article  CAS  PubMed  Google Scholar 

  54. Tegeder, M., and Rentsch, D. (2010) Uptake and partitioning of amino acids and peptides, Mol. Plant, 3, 997–1011.

    Article  CAS  PubMed  Google Scholar 

  55. Weißs, J. H., and Choi, D. W. (1988) β-N-methylamino-Lalanine neurotoxicity: requirement for bicarbonate as a cofactor, Science, 241, 973–975.

    Article  Google Scholar 

  56. Nunn, P. B., and O’Brien, P. (1989) The interaction of beta-N-methylamino-L-alanine with bicarbonate: an 1HNMR study, FEBS Lett., 251, 31–35.

    Article  CAS  PubMed  Google Scholar 

  57. Myers, T. G., and Nelson, S. D. (1990) Neuroactive carbamate adducts of beta-N-methylamino-L-alanine and ethylenediamine. Detection and quantitation under physiological conditions by 13C NMR, J. Biol. Chem., 265, 10193–10195.

    CAS  PubMed  Google Scholar 

  58. Downing, S., Van de Venter, M., and Downing, T. G. (2012) The effect of exogenous ß-N-methylamino-L-alanine on the growth of Synechocystis PCC 6803, Microb. Ecol., 63, 149–156.

    Article  CAS  PubMed  Google Scholar 

  59. Berntzon, L., Erasmie, S., Celepli, N., Eriksson, J., Rasmussen, U., and Bergman, B. (2013) BMAA inhibits nitrogen fixation in the cyanobacterium Nostoc sp. PCC 7120, Mar. Drugs, 11, 3091–3108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Quintero, M. J., Montesinos, M. L., Herrero, A., and Flores, E. (2001) Identification of genes encoding amino acid permeases by inactivation of selected ORFs from the Synechocystis genomic sequence, Genome Res., 11, 2034–2040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Montesinos, M. L., Herrero, A., and Flores, E. (1995) Amino acid transport systems required for diazotrophic growth in the cyanobacterium Anabaena sp. strain PCC 7120, J. Bacteriol., 177, 3150–3157.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pernil, R., Picossi, S., Mariscal, V., Herrero, A., and Flores, E. (2008) ABC-type amino acid uptake transporters Bgt and N-II of Anabaena sp. strain PCC 7120 share an ATPase subunit and are expressed in vegetative cells and heterocysts, Mol. Microbiol., 67, 1067–1080.

    Article  CAS  PubMed  Google Scholar 

  63. Picossi, S., Montesinos, M. L., Pernil, R., Lichtle, C., Herrero, A., and Flores, E. (2005) ABC-type neutral amino acid permease N-I is required for optimal diazotrophic growth and is repressed in the heterocysts of Anabaena sp. strain PCC 7120, Mol. Microbiol., 57, 1582–1592.

    Article  CAS  PubMed  Google Scholar 

  64. Dunlop, R. A., Cox, P. A., Banack, S. A., and Rodgers, K. J. (2013) The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation, PLoS One, 8, doi: 10.1371/journal.pone.0075376.

  65. Plato, C. C., Garruto, R. M., Galasko, D., Craig, U. K., Plato, M., Gamst, A., Torres, J. M., and Wiederholt, W. (2003) Amyotrophic lateral sclerosis and parkinsonism–dementia complex of Guam: changing incidence rates during the past 60 years, Am. J. Epidemiol., 157, 149–157.

    Article  PubMed  Google Scholar 

  66. Spencer, P. S., Nunn, P. B., Hugon, J., Ludolph, A. C., Ross, S. M., Roy, D. N., and Robertson, R. C. (1987) Guam amyotrophic lateral sclerosis–parkinsonism dementia linked to a plant excitant neurotoxin, Science, 237, 517–522.

    Article  CAS  PubMed  Google Scholar 

  67. Rodgers, K. J. (2014) Non-protein amino acids and neurodegeneration: the enemy within, Exp. Neurol., 253, 192–196.

    Article  CAS  PubMed  Google Scholar 

  68. Seawright, A. A., Brown, A. W., Nolan, C. C., and Cavanagh, J. B. (1990) Selective degeneration of cerebellar cortical neurons caused by cycad neurotoxin, L-betamethylaminoalanine (L-BMAA), in rats, Neuropathol. Appl. Neurobiol., 16, 153–169.

    Article  CAS  PubMed  Google Scholar 

  69. Purdie, E. L., Samsudin, S., Eddy, F. B., and Codd, G. A. (2009) Effects of the cyanobacterial neurotoxin ß-N-methylamino-L-alanine on the early-life stage development of zebrafish (Danio rerio), Aquat. Toxicol., 95, 279–284.

    Article  CAS  PubMed  Google Scholar 

  70. Purdie, E. L., Metcalf, J. S., Kashmiri, S., and Codd, G. A. (2009) Toxicity of the cyanobacterial neurotoxin ß-N-methylamino-L-alanine to three aquatic animal species, Amyotroph. Lateral Scler., 10, 67–70.

    Article  CAS  PubMed  Google Scholar 

  71. Goto, J. J., Koenig, J. H., and Ikeda, K. (2012) The physiological effect of ingested ß-N-methylamino-L-alanine on a glutamatergic synapse in an in vivo preparation, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 156, 171–177.

    Article  CAS  PubMed  Google Scholar 

  72. Okle, O., Rath, L., Galizia, C. G., and Dietrich, D. R. (2013) The cyanobacterial neurotoxin beta-N-methylamino-l-alanine (BMAA) induces neuronal and behavioral changes in honeybees, Toxicol. Appl. Pharmacol., 270, 9–15.

    Article  CAS  PubMed  Google Scholar 

  73. Pflugmacher, S., Wiegand, C., Oberemm, A., Beattie, K. A., Krause, E., Codd, G. A., and Steinberg, C. E. (1998) Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication, Biochim. Biophys. Acta, 1425, 527–533.

    Article  CAS  PubMed  Google Scholar 

  74. Downing, T. G., Phelan, R. R., and Downing, S. (2015) A potential physiological role for cyanotoxins in cyanobacteria of arid environments, J. Arid Environ., 112, 147–151.

    Article  Google Scholar 

  75. Cosgrove, J., and Borowitzka, M. A. (2010) Chlorophyll fluorescence terminology: an introduction, in Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications (Sugett, D., Prasil, O., and Borowitzka, M. A., eds.) Springer, Dordrecht, pp. 1–17.

    Chapter  Google Scholar 

  76. Banack, S. A., Caller, T. A., and Stommel, E. W. (2010) The cyanobacteria derived toxin beta-N-methylamino-Lalanine and amyotrophic lateral sclerosis, Toxins (Basel), 2, 2837–2850.

    Article  CAS  PubMed Central  Google Scholar 

  77. Brownson, D. M., Mabry, T. J., and Leslie, S. W. (2002) The cycad neurotoxic amino acid, beta-N-methylaminoL-alanine (BMAA), elevates intracellular calcium levels in dissociated rat brain cells, J. Ethnopharmacol., 82, 159–167.

    Article  CAS  PubMed  Google Scholar 

  78. Rao, S. D., Banack, S. A., Cox, P. A., and Weiss, J. H. (2006) BMAA selectively injures motor neurons via AMPA/kainate receptor activation, Exp. Neurol., 201, 244–252.

    Article  CAS  PubMed  Google Scholar 

  79. Duncan, M. W., Villacreses, N. E., Pearson, P. G., Wyatt, L., Rapoport, S. I., Kopin, I. J., Markey, S. P., and Smith, Q. R. (1991) 2-Amino-3-(methylamino)-propanoic acid (BMAA) pharmacokinetics and blood-brain barrier permeability in the rat, J. Pharmacol. Exp. Ther., 258, 27–35.

    CAS  PubMed  Google Scholar 

  80. Karlßson, O., Bergquist, J., and Andersson, M. (2014) Quality measures of imaging mass spectrometry aids in revealing long-term striatal protein changes induced by neonatal exposure to the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA), Mol. Cell Proteom., 13, 93–104.

    Article  CAS  Google Scholar 

  81. Glover, W. B., Mash, D. C., and Murch, S. J. (2014) The natural non-protein amino acid N-ß-methylamino-l-alanine (BMAA) is incorporated into protein during synthesis, Amino Acids, 46, 2553–2559.

    Article  CAS  PubMed  Google Scholar 

  82. Xie, X., Basile, M., and Mash, D. C. (2013) Cerebral uptake and protein incorporation of cyanobacterial toxin ß-N-methylamino-L-alanine, Neuroreport, 24, 779–784.

    Article  CAS  PubMed  Google Scholar 

  83. Karlsson, O., Berg, A. L., Lindstrom, A. K., Hanrieder, J., Arnerup, G., Roman, E., Bergquist, J., Lindquist, N. G., Brittebo, E. B., and Andersson, M. (2012) Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression, and neurodegeneration in adult hippocampus, Toxicol. Sci., 130, 391–404.

    CAS  Google Scholar 

  84. Van Onselen, R., Cook, N. A., Phelan, R. R., and Downing, T. G. (2015) Bacteria do not incorporate ß-Nmethylamino-l-alanine into their proteins, Toxicon, 102, 55–61.

    Article  PubMed  CAS  Google Scholar 

  85. Fessenden, R. J., and Fessenden, J. S. (1998) Organic Chemistry (Fessenden, J. S., ed.) Brooks/Cole Publishing Company, USA.

  86. Nunn, P. B., and Ponnusamy, M. (2009) ß-N-methylaminoalanine (BMAA): metabolism and metabolic effects in model systems and in neural and other tissues of the rat in vitro, Toxicon, 54, 85–94.

    Article  CAS  PubMed  Google Scholar 

  87. Nunn, P. B. (2009) Three phases of research on ß-Nmethylamino-L-alanine (BMAA)–a neurotoxic amino acid, Amyotroph. Lateral Scler., 10, 26–33.

    Article  CAS  PubMed  Google Scholar 

  88. Cui, Z., Zhang, Y., Inoue, H., Yogo, S., and Hirasawa, E. (2013) Purification and molecular analysis of a monoamine oxidase isolated from Narcissus tazetta, Biosci. Biotechnol. Biochem., 77, 1728–1733.

    Article  CAS  PubMed  Google Scholar 

  89. Boomsma, F., Van Dijk, J., Bhaggoe, U. M., Bouhuizen, A. M., and Van den Meiracker, A. H. (2000) Variation in semicarbazide-sensitive amine oxidase activity in plasma and tissues of mammals, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 126, 69–78.

    CAS  PubMed  Google Scholar 

  90. Gubisne-Haberle, D., Hill, W., Kazachkov, M., Richardson, J. S., and Yu, P. H. (2012) Protein cross-linkage induced by formaldehyde derived from semicarbazidesensitive amine oxidase-mediated deamination of methylamine, J. Pharmacol. Exp. Ther., 310, 1125–1132.

    Article  CAS  Google Scholar 

  91. Percival, F. W., and Purves, W. K. (1974) Multiple amine oxidases in cucumber seedlings, Plant Physiol., 54, 601–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Okle, O., Stemmer, K., Deschl, U., and Dietrich, D. R. (2013) L-BMAA induced ERstress and enhanced caspase 12 cleavage in human neuroblastoma SH-SY5Y cells at low non-excitotoxic concentrations, Toxicol. Sci., 131, 217–224.

    Article  CAS  PubMed  Google Scholar 

  93. Esterhuizen, M., Pflugmacher, S., and Downing, T. G. (2011) ß-N-Methylamino-L-alanine (BMAA) uptake by the aquatic macrophyte Ceratophyllum demersum, Ecotoxicol. Environ. Saf., 74, 74–77.

    Article  CAS  PubMed  Google Scholar 

  94. Liu, X., Rush, T., Zapata, J., and Lobner, D. (2009) ß-Nmethylamino-l-alanine induces oxidative stress and glutamate release through action on system Xc(-), Exp. Neurol., 217, 429–433.

    Article  CAS  PubMed  Google Scholar 

  95. Downing, S., and Downing, T. G. (2016) The metabolism of the non-proteinogenic amino acid ß-N-methylaminoL-alanine (BMAA) in the cyanobacterium Synechocystis PCC 6803, Toxicon, 115, 41–48.

    Article  CAS  PubMed  Google Scholar 

  96. Nunn, P. B., O’Brien, P., Pettit, L. D., and Pyburn, S. I. (1989) Complexes of zinc, copper, and nickel with the nonprotein amino acid L-α-amino-ß-methylaminopropionic acid: a naturally occurring neurotoxin, J. Inorg. Biochem., 37, 175–183.

    Article  CAS  PubMed  Google Scholar 

  97. Weiss, J. H., and Sensi, S. L. (2000) Ca2+,Zn2+ permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration, Trends Neurosci., 23, 365–371.

    Article  CAS  PubMed  Google Scholar 

  98. Perry, C., Sastry, R., Nasrallah, I. M., and Stover, P. J. (2005) Mimosine attenuates serine hydroxymethyltransferase transcription by chelating zinc. Implications for inhibition of DNA replication, J. Biol. Chem., 280, 396–400.

    Article  CAS  PubMed  Google Scholar 

  99. Weißs, J. H., Christine, C. W., and Choi, D. W. (1989) Bicarbonate dependence of glutamate receptor activation by β-N-methylamino-L-alanine: channel recording and study with related compounds, Neuron, 3, 321–326.

    Article  Google Scholar 

  100. Skulachev, V. P. (2012) What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689–706.

    Article  CAS  Google Scholar 

  101. Gordeeva, A. V., Labas, Yu. A., and Zvyagilskaya, R. A. (2004) Apoptosis in unicellular organisms: mechanisms and evolution, Biochemistry (Moscow), 69, 1055–1066.

    Article  CAS  Google Scholar 

  102. Koksharova, O. A. (2013) Bacteria and phenoptosis, Biochemistry (Moscow), 78, 963–970.

    Article  CAS  Google Scholar 

  103. Berman-Frank, I., Bidle, K. D., Haramaty, L., and Falkowski, P. G. (2004) The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway, Limnol. Oceanogr., 49, 997–1005.

    Article  Google Scholar 

  104. Franklin, D. J., Corina, P. D., Brussaard, C. P. D., and Berges, J. A. (2006) What is the role and nature of programmed cell death in phytoplankton ecology? Eur. J. Phycol., 41, 1–14.

    Article  Google Scholar 

  105. Berges, J. A., and Falkowski, P. G. (1998) Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation, Limnol. Oceanogr., 43, 129–135.

    Article  CAS  Google Scholar 

  106. Vardi, A., Eisenstadt, D., Murik, O., Berman-Frank, I., Zohary, T., Levine, A., and Kaplan, A. (2007) Synchronization of cell death in a dinoflagellate population is mediated by an excreted thiol protease, Environ. Microbiol., 9, 360–369.

    Article  CAS  PubMed  Google Scholar 

  107. Luo, C. S., Liang, J. R., Lin, Q., Li, C., Bowler, C., Anderson, D. M., Wang, P., Wang, X. W., and Gao, Y. H. (2014) Genome-wide comparative cellular responses associated with ROS production and cell fate decision in early stress response to iron limitation in the diatom Thalassiosira pseudonana, J. Proteome Res., 13, 5510–5523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiang, Q., Qin, S., and Wu, Q. (2010) Analysis of metacaspases in unicellular and filamentous cyanobacteria, BMC Genomics, 11, 1–11.

    Article  CAS  Google Scholar 

  109. Okamoto, O. K., and Hastings, J. W. (2003) Genome-wide analysis of redox-regulated genes in a dinoflagellate, Gene, 321, 73–81.

    Article  CAS  PubMed  Google Scholar 

  110. Bidle, K. D., and Bender, S. J. (2008) Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana, Eukaryot. Cell, 7, 223–236.

    Article  CAS  PubMed  Google Scholar 

  111. Thamatrakoln, K., Korenovska, O., Niheu, A. K., and Bidle, K. D. (2012) Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana, Environ. Microbiol., 14, 67–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Koksharova.

Additional information

Original Russian Text © A. A. Popova, O. A. Koksharova, 2016, published in Biokhimiya, 2016, Vol. 81, No. 8, pp. 1021-1033.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, A.A., Koksharova, O.A. Neurotoxic non-proteinogenic amino acid β-N-methylamino-L-alanine and its role in biological systems. Biochemistry Moscow 81, 794–805 (2016). https://doi.org/10.1134/S0006297916080022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916080022

Keywords

Navigation