Skip to main content
Log in

Hemoglobin and myoglobin as reducing agents in biological systems. Redox reactions of globins with copper and iron salts and complexes

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In addition to reversible O2 binding, respiratory proteins of the globin family, hemoglobin (Hb) and myoglobin (Mb), participate in redox reactions with various metal complexes, including biologically significant ones, such as those of copper and iron. HbO2 and MbO2 are present in cells in large amounts and, as redox agents, can contribute to maintaining cell redox state and resisting oxidative stress. Divalent copper complexes with high redox potentials (E 0, 200-600 mV) and high stability constants, such as [Cu(phen)2]2+, [Cu(dmphen)2]2+, and CuDTA oxidize ferrous heme proteins by the simple outer-sphere electron transfer mechanism through overlapping π-orbitals of the heme and the copper complex. Weaker oxidants, such as Cu2+, CuEDTA, CuNTA, CuCit, CuATP, and CuHis (E 0≤ 100-150 mV) react with HbO2 and MbO2 through preliminary binding to the protein with substitution of the metal ligands with protein groups and subsequent intramolecular electron transfer in the complex (the site-specific outer-sphere electron transfer mechanism). Oxidation of HbO2 and MbO2 by potassium ferricyanide and Fe(3) complexes with NTA, EDTA, CDTA, ATP, 2,3-DPG, citrate, and pyrophosphate PPi proceeds mainly through the simple outer-sphere electron transfer mechanism via the exposed heme edge. According to Marcus theory, the rate of this reaction correlates with the difference in redox potentials of the reagents and their self-exchange rates. For charged reagents, the reaction may be preceded by their nonspecific binding to the protein due to electrostatic interactions. The reactions of LbO2 with carboxylate Fe complexes, unlike its reactions with ferricyanide, occur via the site-specific outer-sphere electron transfer mechanism, even though the same reagents oxidize structurally similar MbO2 and cytochrome b 5 via the simple outer-sphere electron transfer mechanism. Of particular biological interest is HbO2 and MbO2 transformation into met-forms in the presence of small amounts of metal ions or complexes (catalysis), which, until recently, had been demonstrated only for copper compounds with intermediate redox potentials. The main contribution to the reaction rate comes from copper binding to the “inner” histidines, His97 (0.66 nm from the heme) that forms a hydrogen bond with the heme propionate COO group, and the distal His64. The affinity of both histidines for copper is much lower than that of the surface histidines residues, and they are inaccessible for modification with chemical reagents. However, it was found recently that the high-potential Fe(3) complex, potassium ferricyanide (400 mV), at a 5 to 20% of molar protein concentration can be an efficient catalyst of MbO2 oxidation into metMb. The catalytic process includes binding of ferrocyanide anion in the region of the His119 residue due to the presence there of a large positive local electrostatic potential and existence of a “pocket” formed by Lys16, Ala19, Asp20, and Arg118 that is sufficient to accommodate [Fe(CN)6]4–. Fast, proton-assisted reoxidation of the bound ferrocyanide by oxygen (which is required for completion of the catalytic cycle), unlike slow [Fe(CN)6]4– oxidation in solution, is provided by the optimal location of neighboring protonated His113 and His116, as it occurs in the enzyme active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hb:

hemoglobin

Lb:

leghemoglobin

Mb:

myoglobin

MbO2 :

oxymyoglobin

metMb:

metmyoglobin

bipy:

4,4′-bipyridine

CA-Mb:

metmyoglobin carboxyamidated at histidine residues

CDTA:

trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid

Cit:

citrate

CM-Mb:

metmyoglobin carboxymethylated at histidine residues

dmphen:

2,9-dimethyl-1,10-phenanthroline

2,3-DPG:

2,3-diphosphoglycerate

DTA:

2,5-dithiohexane-1,6-dicarboxylate

EDTA:

ethylenediaminetetraacetic acid

EP:

electrostatic potential

NTA:

nitrilotriacetic acid

phen:

1,10-phenanthroline

PPi :

pyrophosphate

ROS:

reactive oxygen species

References

  1. Antonin, E., and Brunori, M. (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands, in Frontiers in Biology, Amsterdam-London, p. 405.

    Google Scholar 

  2. Arutyunyan, E. G., Safonova, T. N., Obmolova, G. V., Teplyakov, A. V., Popov, A. N., Rusakov, A. A., Rubinskii, S. V., Kuranova, I. P., and Vainshtein, B. K. (1990) Crystal structure of oxyleghemoglobin at a 1.7 Å resolution, Bioorg. Khim., 16, 293–302.

    CAS  Google Scholar 

  3. Shikama, K. (1998) The molecular mechanism of autoxidation for myoglobin and hemoglobin: a venerable puzzle, Chem. Rev., 98, 1357–1373.

    Article  CAS  PubMed  Google Scholar 

  4. Brantley, R. E., Smerdon, S. J., Wilkinson, A. J., Singleton, E. W., and Olson, J. S. (1993) The mechanism of autooxidation of myoglobin, J. Biol. Chem., 268, 6995–7010.

    CAS  PubMed  Google Scholar 

  5. Allen, K. E., and Cornforth, D. P. (2006) Myoglobin oxidation in a model system as affected by nonheme iron and chelating agents, J. Agric. Food Chem., 54, 10134–10140.

    Article  CAS  PubMed  Google Scholar 

  6. Augustin, M. A., and Yandell, J. K. (1979) Oxidation of heme proteins by copper(II) complexes. Rates and mechanism of the copper catalyzed autoxidation of cytochrome c, myoglobin and hemoglobin, Inorg. Chim. Acta, 37, 11–18.

    Article  CAS  Google Scholar 

  7. Eguchi, L. A., and Saltman, P. (1984) The aerobic reduction of Fe(III) complexes by hemoglobin and myoglobin, J. Biol. Chem., 259, 14337–14338.

    CAS  PubMed  Google Scholar 

  8. Hegetschweiler, K., Saltman, P., Dalvit, C., and Wright, P. E. (1987) Kinetics and mechanisms of the oxidation of myoglobin by Fe(III) and Cu(II) complexes, Biochim. Biophys. Acta, 912, 384–397.

    Article  CAS  PubMed  Google Scholar 

  9. Eguchi, L. A., and Saltman, P. (1987) Kinetics and mechanisms of metal reduction by hemoglobin. 2. Reduction of copper(II) complexes, Inorg. Chem., 26, 3669–3672.

    Article  CAS  Google Scholar 

  10. Hura, C., Palamaru, I., and Hura, B. (2002) Assessment of some heavy metals in the maternal body, risk in cancer disease, in Metal Ions in Biology and Medicine: Proc. 7th Int. Symp. on Metal Ions in Biology and Medicine (Khassanova, L., Collery, Ph., Maymard, I., Khassanova, Z., and Etienne, J.-C., eds.) John Libbey Eurotext, St. Petersburg, Vol. 7, pp. 621–624.

  11. Mauk, M. R., Rosell, F. I., and Mauk, A. G. (2009) Metal ion facilitated dissociation of heme from b-type heme proteins, J. Am. Chem. Soc., 131, 16976–16983.

    Article  CAS  PubMed  Google Scholar 

  12. Clopton, D. A., and Saltman, P. (1997) Copper-specific damage in human erythrocytes exposed to oxidative stress, Biol. Trace Elem. Res., 56, 231–240.

    Article  CAS  PubMed  Google Scholar 

  13. Gunther, M. R., Sampath, V., and Caughey, W. S. (1999) Potential roles of myoglobin autoxidation in myocardial ischemia-reperfusion injury, Free Radic. Biol. Med., 26, 1388–1395.

    Article  CAS  PubMed  Google Scholar 

  14. Stadtman, E. R., and Oliver, C. N. (1991) Metal-catalyzed oxidation of proteins, J. Biol. Chem., 266, 2005–2008.

    CAS  PubMed  Google Scholar 

  15. Van Dyke, B. R., and Saltman, P. (1996) Hemoglobin: a mechanism for the generation of hydroxyl radicals, Free Radic. Biol. Med., 20, 985–989.

    Article  PubMed  Google Scholar 

  16. Sievers, G., and Ronnberg, M. (1978) Study of the pseudoperoxidative activity of soybean leghemoglobin and sperm whale myoglobin, Biochim. Biophys. Acta, 533, 293–301.

    Article  CAS  PubMed  Google Scholar 

  17. Puppo, A., Rigaud, G., Job, D., Ricard, G., and Zeba, B. (1980) Peroxidase content of soybean root nodules, Biochim. Biophys. Acta, 614, 303–312.

    Article  CAS  PubMed  Google Scholar 

  18. Flogel, U., Godecke, A., Klotz, L.-O., and Schrader, J. (2004) Role of myoglobin in the antioxidant defense of the heart, FASEB J., 18, 1156–1158.

    PubMed  Google Scholar 

  19. Widmer, C. C., Pereira, C. P., Gehrig, P., Vallelian, F., Schoedon, G., Buehler, P. W., and Schaer, D. (2010) Hemoglobin can attenuate hydrogen peroxide-induced oxidative stress by acting as an antioxidative peroxidase, Antioxid. Redox Signal., 12, 185–198.

    Article  CAS  PubMed  Google Scholar 

  20. Arihara, K., Cassens, R. G., Greaser, M. L., Luchansky, J. B., and Mozdziak, P. E. (1995) Localization of metmyoglobin-reducing enzyme (NADH-cytochrome b5 reductase) system components in bovine skeletal muscle, Meat Sci., 39, 205–213.

    Article  CAS  PubMed  Google Scholar 

  21. Topunov, A. F., Melik-Sarkisyan, S. S., Lysenko, L. A., Karpilenko, G. P., and Kretovich, V. L. (1980) Properties of metleghemoglobin reductase from lupine root nodules, Biokhimiya, 45, 2053–2058.

    CAS  Google Scholar 

  22. Topunov, A. F., and Golubeva, L. I. (1989) Reductases reducing oxygen-transporting hemoproteins: hemoglobin, myoglobin, and leghemoglobin, Usp. Biol. Khim., 30, 239–252.

    CAS  Google Scholar 

  23. Zhang, B.-J., Smerdon, S. J., Wilkinson, A. J., and Sykes, A. G. (1992) Oxidation of residue 45 mutant forms of pig deoxymyoglobin with [Fe(CN)6]3–, J. Inorg. Biochem., 48, 79–84.

    Article  CAS  PubMed  Google Scholar 

  24. Dunn, C. J., Rohlfs, R. J., Fee, J. A., and Saltman, P. (1999) Oxidation of deoxymyoglobin by [Fe(CN)6]3–, J. Inorg. Biochem., 75, 241–244.

    Article  CAS  PubMed  Google Scholar 

  25. Marcus, R. A., and Sutin, N. (1985) Electron transfers in chemistry and biology, Biochim. Biophys. Acta, 811, 265–322.

    Article  CAS  Google Scholar 

  26. Margalit, R., Pecht, I., and Gray, H. B. (1983) Oxidationreduction catalytic activity of a pentaammineruthenium (III) derivative of sperm whale myoglobin, J. Amer. Chem. Soc., 105, 301–302.

    Article  CAS  Google Scholar 

  27. Reid, L. S., Gray, H. B., Dalvit, C., Wright, P. E., and Saltman, P. (1987) Electron transfer from cytochrome b5 to iron and copper complexes, Biochemistry, 26, 7102–7107.

    Article  CAS  PubMed  Google Scholar 

  28. Rifkind, J. M. (1974) Copper and the autoxidation of hemoglobin, Biochemistry, 13, 2475–2481.

    Article  CAS  PubMed  Google Scholar 

  29. Khristova, P. K., Devedzhiev, Ya. D., Atanasov, B. P., and Volkenshtein, M. V. (1980) Studies of electron transfer in hemoproteins. IV. Sperm whale oxymyoglobin oxidation catalyzed by copper ions, Mol. Biol. (Moscow), 14, 1088–1097.

    CAS  Google Scholar 

  30. Postnikova, G. B., Moiseeva, S. A., and Shekhovtsova, E. A. (2010) The main role of inner histidines in the molecular mechanism of myoglobin oxidation catalyzed by copper compounds, Inorg. Chem., 49, 1347–1354.

    Article  CAS  PubMed  Google Scholar 

  31. Rifkind, J. M., Lauer, L. D., Chiang, S. C., and Li, N. C. (1976) Copper and the oxidation of hemoglobin: a comparison of horse and human hemoglobins, Biochemistry, 15, 5337–5343.

    Article  CAS  PubMed  Google Scholar 

  32. Moiseeva, S. A., Postnikova, G. B., and Sivozhelezov, V. S. (2000) Sperm whale oxymyoglobin oxidation catalyzed by ferrocyanide ions: kinetics and mechanism, Biophysics (Moscow), 45, 988–997.

    Google Scholar 

  33. Moiseeva, S. A., Postnikova, G. B., and Sivozhelezov, V. S. (2001) Kinetics and mechanism of oxymyoglobin oxidation catalyzed by potassium ferrocyanide, J. Phys. Chem. (Moscow), 75, 1504–1510.

    CAS  Google Scholar 

  34. Hughes, M. N. (1981) The Inorganic Chemistry of Biological Processes, Wiley, New York, pp. 125–187.

    Google Scholar 

  35. Martell, A. E. (1982) Critical Stability Constants, Plenum, New York, pp. 1–5.

    Book  Google Scholar 

  36. Martell, A. E. (1981) Development of Iron Chelators for Clinical Use (Martell, A. E., Anderson, W. F., and Badman, D. G., eds.) Elsevier, New York, p. 67.

  37. Buckingham, D. A., and Sargeson, A. M. (1964) Chelating Agents and Metal Chelated (Dwyer, F. P., and Mellor, D. P., eds.) Academic Press, New York, p. 237.

  38. Garvan, F. L. (1964) Chelating Agents and Metal Chelated (Dwyer, F. P., and Mellor, D. P., eds.) Academic Press, New York, p. 283.

  39. Rifkind, J. M. (1981) Copper and the oxidation of hemoglobin, in Metal Ions in Biological Systems (Sigel, H., and Dekker, M., eds.) New York, Vol. 12, pp. 192–232.

  40. Rifkind, J. M. (1979) Oxidation of (horse) hemoglobin by copper: an intermediate detected by electron spin resonance, Biochemistry, 18, 3860–3865.

    Article  CAS  PubMed  Google Scholar 

  41. Winterbourn, C. C., and Carrell, R. W. (1977) Oxidation of human hemoglobin by copper. Mechanism and suggested role of the thiol group of residue β-93, Biochem. J., 165, 141–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banaszak, L. J., Watson, H. C., and Kendrew, J. C. (1965) The binding of cupric and zinc ions to crystalline sperm whale myoglobin, J. Mol. Biol., 12, 130–137.

    Article  CAS  PubMed  Google Scholar 

  43. Breslow, E., and Gurd, F. R. N. (1963) Interaction of cupric and zinc ions with sperm whale metmyoglobin, J. Biol. Chem., 238, 1332–1342.

    CAS  PubMed  Google Scholar 

  44. Bakan, D. A., Saltman, P., Theriault, Y., and Wright, P. E. (1991) Kinetics and mechanisms of reduction of Cu(2) and Fe(3) complexes by soybean leghemoglobin α, Biochim. Biophys. Acta, 1079, 182–196.

    Article  CAS  PubMed  Google Scholar 

  45. Jameson, R. F. (1981) Coordination chemistry of copper with regard to biological systems, in Metal Ions in Biological Systems (Sigel, H., ed.) Marcel Dekker, New York, pp. 1–30.

  46. Postnikova, G. B., and Tselikova, S. V. (1987) Electron transfer in hemoproteins. IX. The effect of zinc ions on the rate of oxymyoglobin oxidation by ferricytochrome c, Mol. Biol. (Moscow), 21, 1040–1049.

    CAS  Google Scholar 

  47. Shekhovtsova, E. A., and Postnikova, G. B. (2008) Mechanism of oxymyoglobin oxidation by coper ions: myoglobins carboxymethylated and carboxyamidated at histidine residues, Biophysics (Moscow), 53, 562–572.

    CAS  Google Scholar 

  48. Cocco, M. J., Kao, Y. H., Phillips, A. T., and Lecomte, J. T. J. (1992) Structural comparison of apomyoglobin and metaquomyoglobin: pH titration of histidines by NMR spectroscopy, Biochemistry, 31, 6481–6491.

    Article  CAS  PubMed  Google Scholar 

  49. Bashford, D., Case, D. A., Dalvit, C., Tennant, L., and Wright, P. E. (1993) Electrostatic calculations of side-chain pK values in myoglobin and comparison with NMR data for histidines, Biochemistry, 32, 8045–8056.

    Article  CAS  PubMed  Google Scholar 

  50. Carver, J. A., and Bradbury, J. H. (1984) Assignment of 1H NMR resonances of histidine and other aromatic residues in met-, cyano-, oxy- and (carbon monoxy)myoglobins, Biochemistry, 23, 4890–4905.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, L., Mei, Y., Zhang, Yu., Li, S., Sun, X., and Zhu, L. (2003) Regioselective cleavage of myoglobin with copper(2) compounds at neutral pH, Inorg. Chem., 42, 492–498.

    Article  CAS  PubMed  Google Scholar 

  52. Kent, M. S., Yim, H., and Sasaki, D. Y. (2005) Adsorption of myoglobin to Cu(2)-IDA and Ni(2)-IDA functionalized Langmuir monolayers: study of the protein layer structure during the adsorption process by neutron and X-ray reflectivity, Langmuir, 21, 6815–6824.

    Article  CAS  PubMed  Google Scholar 

  53. Van Dyke, B. R., Bakan, D. A., Glover, K. A. M., Hegenauer, J. C., Saltman, P., Springer, B. A., and Sligar, S. G. (1992) Site-directed mutagenesis of histidine residues involved in Cu(II) binding and reduction by sperm whale myoglobin, Proc. Natl. Acad. Sci. USA, 89, 8016–8019.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moiseeva, S. A., and Postnikova, G. B. (2001) Mechanism of oxidation of oxymyoglobin by copper ions: comparison of sperm whale, horse, and pig myoglobins, Biochemistry (Moscow), 66, 780–787.

    Article  CAS  Google Scholar 

  55. Rousseaux, J., Dautrevaux, M., and Han, K. (1976) Comparison of the amino acid sequence of pig heart myoglobin with other ungulate myoglobins, Biochim. Biophys. Acta, 439, 55–62.

    Article  CAS  PubMed  Google Scholar 

  56. Goraev, E. V., Postnikova, G. B., Moiseeva, S. A., and Shekhovtsova, E. A. (2002) Oxidation of respiratory proteins by metals. Catalytic oxidation of oxymyoglobin by copper ions: kinetics and mechanism, in Metal Ions in Biology and Medicine: Proc. Seventh Int. Symp. on Metal Ions in Biology and Medicine (Khassanova, L., Collery, Ph., Maymard, I., Khassanova, Z., and Etienne, J.-C., eds.) John Libbey Eurotext, St. Petersburg, Vol. 7, pp. 68–72.

  57. Gray, R. D. (1969) The kinetics of oxidation of copper(I) by molecular oxygen in perchloric acid-acetonitrile solution, J. Amer. Chem. Soc., 91, 56–62.

    Article  CAS  Google Scholar 

  58. Antonini, E., Brunori, M., and Wyman, J. (1965) Studies on the oxidation-reduction potentials of heme proteins. IV. The kinetics of oxidation of hemoglobin and myoglobin by ferricyanide, Biochemistry, 4, 545–551.

    Article  CAS  PubMed  Google Scholar 

  59. Brunori, M., Saggese, U., Rotilio, G. C., Antonini, E., and Wyman, J. (1971) Redox equilibrium of sperm-whale myoglobin, Aplysia myoglobin, and Chironomus thummi hemoglobin, Biochemistry, 10, 1604–1609.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, B. J., Andrew, C. R., Tomkinson, N. P., and Sykes, A. G. (1992) Reactivity patterns for redox reactions of monomer forms of myoglobin, hemocyanin and hemerythrin, Biochim. Biophys. Acta, 1102, 245–252.

    Article  CAS  PubMed  Google Scholar 

  61. Colotti, G., Verzili, D., Boffi, A., and Chiancone, E. (1994) Identification of the site of ferrocyanide binding involved in the intramolecular electron transfer process to oxidized heme in Scapharca dimeric hemoglobin, Arch. Biochem. Biophys., 311, 103–106.

    Article  CAS  PubMed  Google Scholar 

  62. Egyed, A., May, A., and Jacobs, A. (1980) Transferrinbipyridine iron transfer mediated by hemoproteins, Biochim. Biophys. Acta, 629, 391–398.

    Article  CAS  PubMed  Google Scholar 

  63. Eguchi, L. A., and Saltman, P. (1987) Kinetics and mechanisms of metal reduction by hemoglobin. 1. Reduction of iron(III) complexes, Inorg. Chem., 26, 3665–3669.

    Article  CAS  Google Scholar 

  64. Harrington, J. P., and Hicks, R. L. (1994) Spectral analysis of Fe(III) complex reduction by hemoglobin: possible mechanisms of interaction, Int. J. Biochem., 26, 1111–1117.

    Article  CAS  PubMed  Google Scholar 

  65. Cassatt, J. C., Marini, C. P., and Bender, J. W. (1975) The reversible reduction of horse metmyoglobin by the iron(II) complex of trans-1,2-diaminocyclohexane-N,N,N′,N′tetraacetate, Biochemistry, 14, 5470–5475.

    Article  CAS  PubMed  Google Scholar 

  66. Yamada, T., Marini, C. P., and Cassatt, J. C. (1978) Oxidation-reduction reactions of hemoglobin A, hemoglobin M Iwate, and hemoglobin M Hyde Park, Biochemistry, 17, 231–236.

    Article  CAS  PubMed  Google Scholar 

  67. Lim, A. R., and Mauk, A. G. (1985) Kinetic analysis of metsulphmyoglobin and metmyoglobin reduction by Fe(EDTA)2–, Biochem. J., 229, 765–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shekhovtsova, E. A., Goraev, E. V., Sivozhelezov, V. S., and Postnikova, G. B. (2005) The oxidation of sperm whale, horse, and pig oxymyoglobins catalyzed by ferrocyanide ions: kinetics and mechanism, Biophysics (Moscow), 50, 33–42.

    Google Scholar 

  69. Shekhovtsova, E. A., Goraev, E. V., Sivozhelezov, V. S., and Postnikova, G. B. (2005) The mechanism of oxymyoglobin oxidation catalyzed by ferrocyanide ions: chemically modified and mutant sperm whale myoglobins, Biophysics (Moscow), 50, 552–561.

    Google Scholar 

  70. Postnikova, G. B., Moiseeva, S. A., Goraev, E. V., and Shekhovtsova, E. A. (2007) Ferrocyanide–a novel catalyst for oxymyoglobin oxidation by molecular oxygen, FEBS J., 274, 5360–5369.

    Article  CAS  PubMed  Google Scholar 

  71. Postnikova, G. B., Tselikova, S. V., and Sivozhelezov, V. S. (1992) Study of electron transport in heme proteins. X. Effect of pH, ionic strength, and zinc ions and the rate of ferricytochrome c reduction by oxymyoglobin from swine heart, Mol. Biol. (Moscow), 26, 880–890.

    CAS  Google Scholar 

  72. Cher, M., and Davidson, N. (1955) The kinetics of the oxygenation of ferrous iron in phosphoric acid solution, J. Amer. Chem. Soc., 77, 793–798.

    Article  CAS  Google Scholar 

  73. Stadtman, E. R., and Oliver, C. N. (1991) Metal-catalyzed oxidation of proteins, J. Biol. Chem., 266, 2005–2008.

    CAS  PubMed  Google Scholar 

  74. Gao, X., Liu, Y., and Song, Zh. (2007) Catalytic effect of ferricyanide between myoglobin and luminol and effect of temperature, Luminescence, 22, 88–91.

    Article  CAS  PubMed  Google Scholar 

  75. Song, Zh., Wang, L., and Hou, S. (2004) A study of the chemiluminescence behavior of myoglobin with luminol and its analytical application, Anal. Bioanal. Chem., 378, 529–535.

    Article  CAS  PubMed  Google Scholar 

  76. Goucher, C. R., and Taylor, J. F. (1964) Compounds of ferric iron with adenosine triphosphate and other nucleoside phosphates, J. Biol. Chem., 239, 2251–2255.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Postnikova.

Additional information

Original Russian Text © G. B. Postnikova, E. A. Shekhovtsova, 2016, published in Uspekhi Biologicheskoi Khimii, 2016, Vol. 56, pp. 337–376.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postnikova, G.B., Shekhovtsova, E.A. Hemoglobin and myoglobin as reducing agents in biological systems. Redox reactions of globins with copper and iron salts and complexes. Biochemistry Moscow 81, 1735–1753 (2016). https://doi.org/10.1134/S0006297916130101

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916130101

Keywords

Navigation