Skip to main content
Log in

Molecular mechanisms of ovarian carcinoma metastasis: Key genes and regulatory microRNAs

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Metastasis of primary tumors progresses stepwise — from change in biochemistry, morphology, and migratory patterns of tumor cells to the emergence of receptors on their surface that facilitate directional migration to target organs followed by the formation of a specific microenvironment in a target organ that helps attachment and survival of metastatic cells. A set of specific genes and signaling pathways mediate this process under control of microRNA. The molecular mechanisms underlying biological processes associated with tumor metastasis are reviewed in this publication using ovarian cancer, which exhibits high metastatic potential, as an example. Information and data on the genes and regulatory microRNAs involved in the formation of cancer stem cells, epithelial–mesenchymal transition, reducing focal adhesion, degradation of extracellular matrix, increasing migration activity of cancer cells, formation of spheroids, apoptosis, autophagy, angiogenesis, formation of metastases, and development of ascites are presented. Clusters of microRNAs (miR-145, miR-31, miR-506, miR-101) most essential for metastasis of ovarian cancer including the families of microRNAs (miR-200, miR-214, miR-25) with dual role, which is different in different histological types of ovarian cancer, are discussed in detail in a section of the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AKT:

AKT serine/threonine kinase

AXL:

AXL receptor tyrosine kinase

BDNF:

brain-derived neurotrophic factor

BIM:

Bcl-2 interacting mediator of cell death

CSC:

cancer stem cells

CXCL12:

C-X-C motif chemokine ligand 12

ECM:

extracellular matrix

E2F2:

E2F transcription factor 2

EGFR:

epidermal growth factor receptor

EMT:

epithelial–mesenchymal transition

ERK/MAPK:

mitogen-activated protein kinase

FGFR:

fibroblast growth factor receptor

HIF-1α:

hypoxia-inducible factor 1 alpha subunit

HMGA2:

high-mobility group (non-histone chromosomal) protein isoform I-C

MET:

mesenchymal–epithelial transition

MMP2:

matrix metalloproteinase 2 (gelatinase A, type IV collagenase)

MMP9:

matrix metalloproteinase 9 (gelatinase B)

mTOR:

mammalian target of rapamycin

NF-κB:

nuclear factor kappa B

Notch:

Notch (Drosophila) homolog 1 (translocation-associated)

PDGF:

platelet-derived growth factor

PI3K:

phosphatidylinositol-4,5-bisphosphate 3-kinase

PTEN:

phosphatase and tensin homolog (phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase)

P70S6K:

ribosomal protein S6 kinase

RAC1:

Ras-related C3 botulinum toxin substrate 1

SLUG/SNEIL2:

Slug (chicken homolog), zinc finger protein

SMARCA4/BRG1:

SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4

SNAIL:

Snail family transcriptional repressor

SOX4/9:

SRY (sex determining region Y)-box 4/9 protein

S1P:

sphingosine-1-phosphate

SPHK1:

sphingosine kinase 1

S1PR1/2:

sphingosine-1-phosphate receptor 1/2

TGF-β:

transforming growth factor beta

TP53:

tumor protein P53

TWIST:

Twist family BHLH transcription factor

ULK1:

Unc-51 like autophagy-activating kinase 1

uPA:

urokinase type plasminogen activator

VEGF:

vascular endothelial growth factor

VEGFR:

vascular endothelial growth factor receptor

Wnt:

wingless-type MMTV integration site family

ZBTB10:

zinc finger and BTB domain-containing protein 10

ZEB:

zinc finger E-box binding homeobox 1/2

References

  1. Chikina, A. S., and Aleksandrova, A. Yu. (2014) The cellular mechanisms and regulation of metastasis formation, Mol. Biol., 48, 165–180.

    Article  CAS  Google Scholar 

  2. Chan, S. H., and Wang, L. H. (2015) Regulation of cancer metastasis by microRNAs, J. Biomed. Sci., 22, 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K. K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., Min, R., Alves, P., Abyzov, A., Addleman, N., Bhardwaj, N., Boyle, A. P., Cayting, P., Charos, A., Chen, D. Z., Cheng, Y., Clarke, D., Eastman, C., Euskirche, G., Frietze, S., Fu, Y., Gertz, J., Grubert, F., Harmanci, A., Jain, P., Kasowski, M., Lacroute, P., Leng, J., Lian, J., Monahan, H., O’Geen, H., Ouyang, Z., Partridge, E. C., Patacsil, D., Pauli, F., Raha, D., Ramirez, L., Reddy, T. E., Reed, B., Shi, M., Slifer, T., Wang, J., Wu, L., Yang, X., Yip, K. Y., Zilberman-Schapira, G., Batzoglou, S., Sidow, A., Farnham, P. J., Myers, R. M., Weissman, S. M., and Snyder, M. (2012) Architecture of the human regulatory network derived from ENCODE data, Nature, 489, 91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Loginov, V. I., Rykov, S. V., Fridman, M. V., and Braga, E. A. (2015) Methylation of miRNA genes and oncogenesis, Biochemistry (Moscow), 80, 145–162.

    Article  CAS  Google Scholar 

  5. Lopez-Serra, P., and Esteller, M. (2012) DNA methylationassociated silencing of tumor suppressor microRNAs in cancer, Oncogene, 31, 1609–1622.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Y., Kim, S., and Kim, I. M. (2014) Regulation of metastasis by microRNAs in ovarian cancer, Front. Oncol., 4, 143.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen, X., Zhang, J., Zhang, Z., Li, H., Cheng, W., and Liu, J. (2013) Cancer stem cells, epithelialmesenchymal transition, and drug resistance in highgrade ovarian serous carcinoma, Hum. Pathol., 44, 2373–2384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mittempergher, L. (2016) Genomic characterization of highgrade serous ovarian cancer: dissecting its molecular heterogeneity as a road towards effective therapeutic strategies, Curr. Oncol. Rep., 18, 44.

    Article  PubMed  Google Scholar 

  9. Chakraborty, C., Chin, K. Y., and Das, S. (2016) miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis, Tumor Biol., 37, 13039–13048.

    Article  CAS  Google Scholar 

  10. Xu, C. X., Xu, M., Tan, L., Yang, H., Permuth-Wey, J., Kruk, P. A., Wenham, R. M., Nicosia, S. V., Lancaster, J. M., Sellers, T. A., and Cheng, J. Q. (2012) MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog, J. Biol. Chem., 287, 34970–34978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zaravinos, A. (2015) The regulatory role of microRNAs in EMT and cancer, J. Oncol., 865816.

    Google Scholar 

  12. Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., Waldvogel, B., Vannier, C., Darling, D., zur Hausen, A., Brunton, V. G., Morton, J., Sansom, O., Schuler, J., Stemmler, M. P., Herzberger, C., Hopt, U., Keck, T., Brabletz, S., and Brabletz, T. (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemnessinhibiting microRNAs, Nat. Cell. Biol., 11, 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  13. Yeh, Y. M., Chuang, C. M., Chao, K. C., and Wang, L. H. (2013) MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1α, Int. J. Cancer, 133, 867–878.

    Article  CAS  PubMed  Google Scholar 

  14. Sun, Y., Guo, F., Bagnoli, M., Xue, F. X., Sun, B. C., Shmulevich, I., Mezzanzanica, D., Chen, K. X., Sood, A. K., Yang, D., and Zhang, W. (2015) Key nodes of a microRNA network associated with the integrated mesenchymal subtype of highgrade serous ovarian cancer, Chin. J. Cancer, 34, 28–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong, R., Liu, X., Zhang, Q., Jiang, Z., Li, Y., Wei, Y., Li, Y., Yang, Q., Liu, J., Wei, J. J., Shao, C., Liu, Z., and Kong, B. (2014) miR-145 inhibits tumor growth and metastasis by targeting metadherin in highgrade serous ovarian carcinoma, Oncotarget, 5, 10816–10829.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mitra, A. K., Chiang, C. Y., Tiwari, P., Tomar, S., Watters, K. M., Peter, M. E., and Lengyel, E. (2015) Microenvironmentinduced downregulation of miR-193b drives ovarian cancer metastasis, Oncogene, 34, 5923–5932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, H., Xu, Y., Qiu, W., Zhao, D., and Zhang, Y. (2015) Tissue miR-193b as a novel biomarker for patients with ovarian cancer, Med. Sci. Monit., 21, 3929–3934.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma, Nature, 474, 609–615.

    Article  Google Scholar 

  19. Yang, D., Sun, Y., Hu, L., Zheng, H., Ji, P., Pecot, C. V., Zhao, Y., Reynolds, S., Cheng, H., Rupaimoole, R., Cogdell, D., Nykter, M., Broaddus, R., Rodriguez-Aguayo, C., Lopez-Berestein, G., Liu, J., Shmulevich, I., Sood, A. K., Chen, K., and Zhang, W. (2013) Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer, Cancer Cell, 23, 186–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Imam, J. S., Plyler, J. R., Bansal, H., Prajapati, S., Bansal, S., Rebeles, J., Chen, H. I., Chang, Y. F., Panneerdoss, S., Zoghi, B., Buddavarapu, K. C., Broaddus, R., Hornsby, P., Tomlinson, G., Dome, J., Vadlamudi, R. K., Pertsemlidis, A., Chen, Y., and Rao, M. K. (2012) Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization, PLoS One, 7, e52397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei, L. Q., Liang, H. T., Qin, D. C., Jin, H. F., Zhao, Y., and She, M. C. (2014) MiR-212 exerts suppressive effect on SKOV3 ovarian cancer cells through targeting HBEGF, Tumor Biol., 35, 12427–12434.

    Article  CAS  Google Scholar 

  22. Li, J., Li, D., and Zhang, W. (2016) Tumor suppressor role of miR-217 in human epithelial ovarian cancer by targeting IGF1R, Oncol. Rep., 35, 1671–1679.

    CAS  PubMed  Google Scholar 

  23. Zhang, H., Wang, Q., Zhao, Q., and Di, W. (2013) MiR-124 inhibits the migration and invasion of ovarian cancer cells by targeting SphK1, J. Ovarian Res., 6, 84.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wen, Z., Zhao, S., Liu, S., Liu, Y., Li, X., and Li, S. (2015) MicroRNA-148a inhibits migration and invasion of ovarian cancer cells via targeting sphingosine-1-phosphate receptor 1, Mol. Med. Rep., 12, 3775–3780.

    CAS  PubMed  Google Scholar 

  25. Li, P., Sun, Y., and Liu, Q. (2016) MicroRNA-340 induces apoptosis and inhibits metastasis of ovarian cancer cells by inactivation of NF-x03BA;B1, Cell. Physiol. Biochem., 38, 1915–1927.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, S., Chen, X., Xiu, Y. L., Sun, K. X., and Zhao, Y. (2015) Inhibition of ovarian epithelial carcinoma tumorigenesis and progression by microRNA 106b mediated through the RhoC pathway, PLoS One, 10, e0125714.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lin, K. T., Yeh, Y. M., Chuang, C. M., Yang, S. Y., Chang, J. W., Sun, S. P., Wang, Y. S., Chao, K. C., and Wang, L. H. (2015) Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis through targeting Rap1B, Nat. Commun., 6, 5917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cowden Dahl, K. D., Dahl, R., Kruichak, J. N., and Hudson, L. G. (2009) The epidermal growth factor receptor responsive miR-125a represses mesenchymal morphology in ovarian cancer cells, Neoplasia, 11, 1208–1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, Y., Jiang, Y., Wan, Y., Zhang, L., Qiu, J., Zhou, S., and Cheng, W. (2016) UCA1 functions as a competing endogenous RNA to suppress epithelial ovarian cancer metastasis, Tumor Biol., 37, 10633–10641.

    Article  CAS  Google Scholar 

  30. Vang, S., Wu, H. T., Fischer, A., Miller, D. H., MacLaughlan, S., Douglass, E., Comisar, L., Steinhoff, M., Collins, C., Smith, P. J., Brard, L., and Brodsky, A. S. (2013) Identification of ovarian cancer metastatic miRNAs, PLoS One, 8, e58226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pan, Y., Robertson, G., Pedersen, L., Lim, E., Hernandez-Herrera, A., Rowat, A. C., Patil, S. L., Chan, C. K., Wen, Y., Zhang, X., Basu-Roy, U., Mansukhani, A., Chu, A., Sipahimalani, P., Bowlby, R., Brooks, D., Thiessen, N., Coarfa, C., Ma, Y., Moore, R. A., Schein, J. E., Mungall, A. J., Liu, J., Pecot, C. V., Sood, A. K., Jones, S. J., Marra, M. A., and Gunaratne, P. H. (2016) miR-509-3p is clinically significant and strongly attenuates cellular migration and multicellular spheroids in ovarian cancer, Oncotarget, 7, 25930–25948.

    PubMed  PubMed Central  Google Scholar 

  32. Lin, J., Zhang, L., Huang, H., Huang, Y., Huang, L., Wang, J., Huang, S., He, L., Zhou, Y., Jia, W., Yun, J., Luo, R., and Zheng, M. (2015) MiR-26b/KPNA2 axis inhibits epithelial ovarian carcinoma proliferation and metastasis through downregulating OCT4, Oncotarget, 6, 23793–23806.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lam, S. S., Ip, C. K., Mak, A. S., and Wong, A. S. (2016) A novel p70 S6 kinase–microRNA biogenesis axis mediates multicellular spheroid formation in ovarian cancer progression, Oncotarget, 7, 38064–38077.

    PubMed  PubMed Central  Google Scholar 

  34. Titone, R., Morani, F., Follo, C., Vidoni, C., Mezzanzanica, D., and Isidoro, C. (2014) Epigenetic control of autophagy by microRNAs in ovarian cancer, Biomed. Res. Int., 2014, 343542.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fang, Y., Xu, C., and Fu, Y. (2015) MicroRNA-17-5p induces drug resistance and invasion of ovarian carcinoma cells by targeting PTEN signaling, J. Biol. Res. (Thessalon), 22, 12.

    Article  CAS  Google Scholar 

  36. Lou, Y., Yang, X., Wang, F., Cui, Z., and Huang, Y. (2010) MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein, Int. J. Mol. Med., 26, 819–827.

    Article  CAS  PubMed  Google Scholar 

  37. Penna, E., Orso, F., and Taverna, D. (2015) miR-214 as a key hub that controls cancer networks: small player, multiple functions, J. Invest. Dermatol., 135, 960–969.

    Article  CAS  PubMed  Google Scholar 

  38. Shen, Y., Li, D. D., Wang, L. L., Deng, R., and Zhu, X. F. (2008) Decreased expression of autophagyrelated proteins in malignant epithelial ovarian cancer, Autophagy, 4, 1067–1068.

    Article  CAS  PubMed  Google Scholar 

  39. Bunkholt, E. M., Dong, H. P., Odegaard, E., Holth, A., Elloul, S., Reich, R., Trope, C. G., and Davidson, B. (2010) Mammalian target of rapamycin is a biomarker of poor survival in metastatic serous ovarian carcinoma, Hum. Pathol., 41, 794–804.

    Article  Google Scholar 

  40. Vecchione, A., Belletti, B., Lovat, F., Volinia, S., Chiappetta, G., Giglio, S., Sonego, M., Cirombella, R., Onesti, E. C., Pellegrini, P., Califano, D., Pignata, S., Losito, S., Canzonieri, V., Sorio, R., Alder, H., Wernicke, D., Stoppacciaro, A., Baldassarre, G., and Croce, C. M. (2013) A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis, Proc. Natl. Acad. Sci. USA, 110, 9845–9850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luo, Z., Wang, Q., Lau, W. B., Lau, B., Xu, L., Zhao, L., Yang, H., Feng, M., Xuan, Y., Yang, Y., Lei, L., Wang, C., Yi, T., Zhao, X., Wei, Y., and Zhou, S. (2016) Tumor microenvironment: the culprit for ovarian cancer metastasis? Cancer Lett., 377, 174–182.

    Article  CAS  PubMed  Google Scholar 

  42. Joshi, H. P., Subramanian, I. V., Schnettler, E. K., Ghosh, G., Rupaimoole, R., Evans, C., Saluja, M., Jing, Y., Cristina, I., Roy, S., Zeng, Y., Shah, V. H., Sood, A. K., and Ramakrishnan, S. (2014) Dynamin 2 along with microRNA-199a reciprocally regulate hypoxiainducible factors and ovarian cancer metastasis, Proc. Natl. Acad. Sci. USA, 111, 5331–5336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lv, Y., Lei, Y., Hu, Y., Ding, W., Zhang, C., and Fang, C. (2015) miR-448 negatively regulates ovarian cancer cell growth and metastasis by targeting CXCL12, Clin. Transl. Oncol., 17, 903–909.

    Article  CAS  PubMed  Google Scholar 

  44. Schmid, G., Notaro, S., Reimer, D., Abdel-Azim, S., Duggan-Peer, M., Holly, J., Fiegl, H., Rössler, J., Wiedemair, A., Concin, N., Altevogt, P., Marth, C., and Zeimet, A. G. (2016) Expression and promotor hypermethylation of miR-34a in the various histological subtypes of ovarian cancer, BMC Cancer, 16, 102.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li, R., Shi, X., Ling, F., Wang, C., Liu, J., Wang, W., and Li, M. (2015) MiR-34a suppresses ovarian cancer proliferation and motility by targeting AXL, Tumor Biol., 36, 7277–7283.

    Article  CAS  Google Scholar 

  46. Dong, P., Xiong, Y., Watari, H., Hanley, S. J., Konno, Y., Ihira, K., Yamada, T., Kudo, M., Yue, J., and Sakuragi, N. (2016) MiR-137 and miR-34a directly target Snail and inhibit EMT, invasion and sphereforming ability of ovarian cancer cells, J. Exp. Clin. Cancer Res., 35, 132.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim, T. H., Song, J. Y., Park, H., Jeong, J. Y., Kwon, A. Y., Heo, J. H., Kang, H., Kim, G., and An, H. J. (2015) miR-145, targeting highmobility group A2, is a powerful predictor of patient outcome in ovarian carcinoma, Cancer Lett., 28, 937–945.

    Article  Google Scholar 

  48. Chen, X., Dong, C., Law, P., Chan, M. T., Su, Z., Wang, S., Wu, W. K., and Xu, H. (2015) MicroRNA-145 targets TRIM2 and exerts tumorsuppressing functions in epithelial ovarian cancer, Gynecol. Oncol., 139, 513–519.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, W., Wang, Q., Yu, M., Wu, N., and Wang, H. (2014) MicroRNA-145 function as a cell growth repressor by directly targeting c-Myc in human ovarian cancer, Technol. Cancer Res. Threat., 13, 161–168.

    CAS  Google Scholar 

  50. Xu, Q., Liu, L. Z., Qian, X., Chen, Q., Jiang, Y., Li, D., Lai, L., and Jiang, B. H. (2012) MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis, Nucleic Acids Res., 40, 761–774.

    Article  CAS  PubMed  Google Scholar 

  51. Creighton, C. J., Fountain, M. D., Yu, Z., Nagaraja, A. K., Zhu, H., Khan, M., Olokpa, E., Zariff, A., Gunaratne, P. H., Matzuk, M. M., and Anderson, M. L. (2010) Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers, Cancer Res., 70, 1906–1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mitamura, T., Watari, H., Wang, L., Kanno, H., Hassan, M. K., Miyazaki, M., Katoh, Y., Kimura, T., Tanino, M., Nishihara, H., Tanaka, S., and Sakuragi, N. (2013) Downregulation of miRNA-31 induces taxane resistance in ovarian cancer cells through increase of receptor tyrosine kinase MET, Oncogenesis, 25, e40.

    Article  Google Scholar 

  53. Guo, F., Cogdell, D., Hu, L., Yang, D., Sood, A. K., Xue, F., and Zhang, W. (2014) MiR-101 suppresses the epithelialtomesenchymal transition by targeting ZEB1 and ZEB2 in ovarian carcinoma, Oncol. Rep., 31, 2021–2028.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kinose, Y., Sawada, K., Nakamura, K., and Kimura, T. (2014) The role of microRNAs in ovarian cancer, Biomed. Res. Int., 249393.

    Google Scholar 

  55. Sulaiman, S. A., Ab Mutalib, N. S., and Jamal, R. (2016) miR-200c regulation of metastases in ovarian cancer: potential role in epithelial and mesenchymal transition, Front. Pharmacol., 7, 271.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tang, M. K., and Wong, A. S. (2015) Exosomes: emerging biomarkers and targets for ovarian cancer, Cancer Lett., 367, 26–33.

    Article  CAS  PubMed  Google Scholar 

  57. Gong, C., Yang, Z., Wu, F., Han, L., Liu, Y., and Gong, W. (2016) miR-17 inhibits ovarian cancer cell peritoneal metastasis by targeting ITGA5 and ITGB1, Oncol. Rep., 36, 2177–2183.

    CAS  PubMed  Google Scholar 

  58. Xie, J., Liu, M., Li, Y., Nie, Y., Mi, Q., and Zhao, S. (2014) Ovarian tumorassociated microRNA-20a decreases natural killer cell cytotoxicity by downregulating MICA/B expression, Cell Mol. Immunol., 11, 495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yan, J., Jiang, J. Y., Meng, X. N., Xiu, Y. L., and Zong, Z. H. (2016) MiR-23b targets cyclin G1 and suppresses ovarian cancer tumorigenesis and progression, J. Clin. Cancer Res., 35, 31.

    Article  Google Scholar 

  60. Ibrahim, F. F., Jamal, R., Syafruddin, S. E., Ab Mutalib, N. S., Saidin, S., MdZin, R. R., Hossain Mollah, M. M., and Mokhtar, N. M. (2015) MicroRNA-200c and microRNA-31 regulate proliferation, colony formation, migration and invasion in serous ovarian cancer, J. Ovarian Res., 8, 56.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen, L., Zhang, F., Sheng, X. G., Zhang, S. Q., Chen, Y. T., and Liu, B. W. (2016) MicroRNA-106a regulates phosphatase and tensin homologue expression and promotes the proliferation and invasion of ovarian cancer cells, Oncol. Rep., 36, 2135–2141.

    CAS  PubMed  Google Scholar 

  62. Chen, S., Chen, X., Xiu, Y. L., Sun, K. X., and Zhao, Y. (2015) Inhibition of ovarian epithelial carcinoma tumorigenesis and progression by microRNA 106b mediated through the RhoC pathway, PLoS One, 10, e0125714.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chai, Y., Liu, J., Zhang, Z., and Liu, L. (2016) HuR-regulated lncRNA NEAT1 stability in tumorigenesis and progression of ovarian cancer, Cancer Med., 5, 1588–1598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, L., He, J., Xu, H., Xu, L., and Li, N. (2016) MiR-143 targets CTGF and exerts tumorsuppressing functions in epithelial ovarian cancer, Am. J. Transl. Res., 8, 2716–2726.

    PubMed  PubMed Central  Google Scholar 

  65. Jin, M., Yang, Z., Ye, W., Xu, H., and Hua, X. (2014) MicroRNA-150 predicts a favorable prognosis in patients with epithelial ovarian cancer, and inhibits cell invasion and metastasis by suppressing transcriptional repressor ZEB1, PLoS One, 9, e103965.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liang, T., Li, L., Cheng, Y., Ren, C., and Zhang, G. (2016) MicroRNA-194 promotes the growth, migration, and invasion of ovarian carcinoma cells by targeting protein tyrosine phosphatase nonreceptor type 12, Onco Targets Ther., 9, 4307–4315.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Niu, K., Shen, W., Zhang, Y., Zhao, Y., and Lu, Y. (2015) MiR-205 promotes motility of ovarian cancer cells via targeting ZEB1, Gene, 574, 330–336.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, Y., Shi, B., Chen, J., Hu, L., and Zhao, C. (2016) MiR-338-3p targets pyruvate kinase M2 and affects cell proliferation and metabolism of ovarian cancer, Am. J. Transl. Res., 8, 3266–3273.

    PubMed  PubMed Central  Google Scholar 

  69. Zhang, Z., Cheng, J., Wu, Y., Qiu, J., Sun, Y., and Tong, X. (2016) LncRNA HOTAIR controls the expression of Rab22a by sponging miR-373 in ovarian cancer, Mol. Med. Rep., 14, 2465–2472.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun, Y., Hu, L., Zheng, H., Bagnoli, M., Guo, Y., Rupaimoole, R., Rodriguez-Aguayo, C., Lopez-Berestein, G., Ji, P., Chen, K., Sood, A. K., Mezzanzanica, D., Liu, J., Sun, B., and Zhang, W. (2015) MiR-506 inhibits multiple targets in the epithelialtomesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer, J. Pathol., 235, 25–36.

    Article  CAS  PubMed  Google Scholar 

  71. Rupaimoole, R., Ivan, C., Yang, D., Gharpure, K. M., Wu, S. Y., Pecot, C. V., Previs, R. A., Nagaraja, A. S., Armaiz-Pena, G. N., McGuire, M., Pradeep, S., Mangala, L. S., Rodriguez-Aguayo, C., Huang, L., Bar-Eli, M., Zhang, W., Lopez-Berestein, G., Calin, G. A., and Sood, A. K. (2016) Hypoxiaupregulated microRNA-630 targets Dicer, leading to increased tumor progression, Oncogene, 35, 4312–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, Y., Yan, S., Liu, X., Zhang, W., Li, Y., Dong, R., Zhang, Q., Yang, Q., Yuan, C., Shen, K., and Kong, B. (2014) miR-1236-3p represses the cell migration and invasion abilities by targeting ZEB1 in highgrade serous ovarian carcinoma, Oncol. Rep., 31, 1905–1910.

    CAS  PubMed  Google Scholar 

  73. Piletic, K., and Kunej, T. (2016) MicroRNA epigenetic signatures in human disease, Arch. Toxicol., 90, 2405–2419.

    Article  CAS  PubMed  Google Scholar 

  74. Baylin, S. B., and Jones, P. A. (2016) Epigenetic determinants of cancer, Cold Spring Harb. Perspect. Biol., 8, a019505.

    Article  Google Scholar 

  75. Malladi, S., Macalinao, D. G., Jin, X., He, L., Basnet, H., Zou, Y., De Stanchina, E., and Massague, J. (2016) Metastatic latency and immune evasion through autocrine inhibition of WNT, Cell, 165, 45–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Braga.

Additional information

To whom correspondence should be addressed.

Original Russian Text © E. A. Braga, M. V. Fridman, N. E. Kushlinskii, 2017, published in Biokhimiya, 2017, Vol. 82, No. 5, pp. 717-731.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, E.A., Fridman, M.V. & Kushlinskii, N.E. Molecular mechanisms of ovarian carcinoma metastasis: Key genes and regulatory microRNAs. Biochemistry Moscow 82, 529–541 (2017). https://doi.org/10.1134/S0006297917050017

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917050017

Keywords

Navigation