Skip to main content
Log in

MicroRNA-630 suppresses epithelial-to-mesenchymal transition by regulating FoxM1 in gastric cancer cells

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In the present study, we investigated the functional role of microRNA (miR)-630 in epithelial-to-mesenchymal transition (EMT) of gastric cancer (GC) cells, as well as the regulatory mechanism. Cells of human GC cell line SGC 7901 were transfected with miR-630 mimic or miR-630 inhibitor. The transfection efficiency was confirmed by qRT-PCR. Cell migration and invasion were determined by Transwell assay. Protein expression of E-cadherin, vimentin, and Forkhead box protein M1 (FoxM1) was tested by Western blot. Moreover, the expression of FoxM1 was elevated or suppressed, and then the effects of miR-630 abnormal expression on EMT and properties of migration and invasion were examined again, as well as protein expression of Ras/phosphoinositide 3-kinase (PI3K)/AKT related factors. The results showed that (i) the EMT and properties of migration and invasion were statistically decreased by overexpression of miR-630 compared to the control group but markedly increased by suppression of miR-630. However, (ii) abnormal expression of FoxM1 reversed these effects in GC cells. Moreover, (iii) expression of GTP-Rac1, p-PI3K, and p-AKT was decreased by miR-630 overexpression but increased by FoxM1 overexpression. (iv) The decreased levels of GTP-Rac1, p-PI3K, and p-AKT induced by miR-630 overexpression were dramatically elevated by simultaneous overexpression of FoxM1. In conclusion, our results suggest that miR-630 might be a tumor suppressor in GC cells. MiR-630 suppresses EMT by regulating FoxM1 in GC cells, supposedly via inactivation of the Ras/PI3K/AKT pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EMT:

epithelial-to-mesenchymal transition

FoxM1:

Forkhead box protein M1

GC:

gastric cancer (cells)

miR-630:

microRNA-630

PI3K:

phosphoinositide 3-kinase

References

  1. Herszenyi, L., and Tulassay, Z. (2010) Epidemiology of gastrointestinal and liver tumors, Eur. Rev. Med. Pharmacol. Sci., 14, 249–258.

    PubMed  Google Scholar 

  2. Siegel, R., Naishadham, D., and Jemal, A. (2013) Cancer statistics, Cancer J. Clin., 63, 11–30.

    Article  Google Scholar 

  3. Jing, J. J., Liu, H. Y., Hao, J. K., Wang, L. N., Wang, Y. P., Sun, L. H., and Yuan, Y. (2012) Gastric cancer incidence and mortality in Zhuanghe, China, between 2005 and 2010, World J. Gastroenterol., 18, 1262–1269.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yang, L. (2006) Incidence and mortality of gastric cancer in China, World J. Gastroenterol., 12, 17–20.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dassen, A., Lemmens, V. P., Van, D. P., Creemers, G. J., Brenninkmeijer, S., Lips, D., Wurff, A., Bosscha, K., and Coebergh, J. (2010) Trends in incidence, treatment and survival of gastric adenocarcinoma between 1990 and 2007: a population-based study in The Netherlands, Eur. J. Cancer, 46, 1101–1110.

    Article  CAS  PubMed  Google Scholar 

  6. Macdonald, J. S. (2006) Gastric cancer–new therapeutic options, New Eng. J. Med., 355, 76–77.

    Article  CAS  PubMed  Google Scholar 

  7. Krol, J., and Krzyzosiak, W. J. (2006) Structure analysis of microRNA precursors, MicroRNA Protoc., 342, 19–32.

    Article  CAS  Google Scholar 

  8. Shenouda, S. K., and Alahari, S. K. (2009) MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev., 28, 369–378.

    Article  CAS  PubMed  Google Scholar 

  9. Ruan, K., Fang, X., and Ouyang, G. (2009) MicroRNAs: novel regulators in the hallmarks of human cancer, Cancer Lett., 285, 116–126.

    Article  CAS  PubMed  Google Scholar 

  10. Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K. Mercatanti, A., Hammond, S., and Rainaldi, G. (2006) MicroRNAs modulate the angiogenic properties of HUVECs, Blood, 108, 3068–3071.

    Article  CAS  PubMed  Google Scholar 

  11. Gregory, P. A., Bracken, C. P., Bert, A. G., and Goodall, G. J. (2008) MicroRNAs as regulators of epithelial-mesenchymal transition, Cell Cycle, 7, 3112–3117.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, J., and Ma, L. (2012) MicroRNA control of epithelial-mesenchymal transition and metastasis, Cancer Metastasis Rev., 31, 653–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katsuno, Y., Lamouille, S., and Derynck, R. (2013) TGF-β signaling and epithelial-mesenchymal transition in cancer progression, Curr. Opin. Oncol., 25, 76–84.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, J., and Weinberg, R. A. (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis, Dev. Cell, 14, 818–829.

    Article  CAS  PubMed  Google Scholar 

  15. Diepenbruck, M., and Christofori, G. (2016) Epithelialmesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr. Opin. Cell Biol., 43, 7–13.

    Article  CAS  PubMed  Google Scholar 

  16. Song, Y. F., Hong, J. F., Liu, D. L., Lin, Q. A., Lan, X. P., and Lai, G. X. (2015) miR-630 targets LMO3 to regulate cell growth and metastasis in lung cancer, Am. J. Transl. Res., 7, 1271–1279.

    PubMed  PubMed Central  Google Scholar 

  17. Kim, S. J., Wang, Y. G., Lee, H. W., Kang, H. G., La, S. H., Choi, I. J., Irimura, T., Ro, J. Y., Bresalier, R. S., and Chun, K. H. (2014) Up-regulation of neogenin-1 increases cell proliferation and motility in gastric cancer, Oncotarget, 5, 3386–3398.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Galluzzi, L., Morselli, E., Vitale, I., Kepp, O., Senovilla, L., Criollo, A., Servant, N., Paccard, C., Hupe, P., Robert, T., Ripoche, H., Lazar, V., Harel-Bellan, A., Dessen, P., Barillot, E., and Kroemer, G. (2010) miR-181a and miR-630 regulate cisplatin-induced cancer cell death, Cancer Res., 70, 1793–1803.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, Y., Chuang, A., Hao, H., Talbot, C., Sen, T., Trink, B., Sidransky, D., and Ratovitski, E. (2011) Phospho-DeltaNp63alpha is a key regulator of the cisplatin-induced microRNAome in cancer cells, Cell Death Differ., 18, 1220–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuo, T. C., Tan, C. T., Chang, Y. W., Hong, C. C., Lee, W. J., Chen, M. W., Jeng, Y. M., Chiou, J., Yu, P., Chen, P. S., Wang, M. Y., Hsiao, M., Su, J. L., and Kuo, M. L. (2013) Angiopoietin-like protein 1 suppresses SLUG to inhibit cancer cell motility, J. Clin. Invest., 123, 1082–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Farhana, L., Dawson, M. I., Murshed, F., Das, J. K., Rishi, A. K., and Fontana, J. A. (2013) Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R, PLoS One, 8, e61015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chu, D., Zhao, Z., Li, Y., Li, J., Zheng, J., Wang, W., Zhao, Q., and Ji, G. (2014) Increased microRNA-630 expression in gastric cancer is associated with poor overall survival, PLoS One, 9, e90526.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Downward, J. (2003) Targeting Ras signalling pathways in cancer therapy, Nat. Rev. Cancer, 3, 11–22.

    Article  CAS  PubMed  Google Scholar 

  24. Castellano, E., and Downward, J. (2011) Ras interaction with PI3K: more than just another effector pathway, Genes Cancer, 2, 261–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Whiteside, T. (2008) The tumor microenvironment and its role in promoting tumor growth, Oncogene, 27, 5904–5912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang, L., Wu, R. L., and Xu, A. M. (2015) Epithelialmesenchymal transition in gastric cancer, Am. J. Transl. Res., 7, 2141–2158.

    PubMed  PubMed Central  Google Scholar 

  27. Peng, Z., Wang, C. X., Fang, E. H., Wang, G. B., and Tong, Q. (2014) Role of epithelial-mesenchymal transition in gastric cancer initiation and progression, World J. Gastroenterol., 20, 5403–5410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, C., Zhuang, Y., Jiang, S., Liu, S., Zhou, J., Wu, J., Teng, Y., Xia, B., Wang, R., and Zou, X. (2016) Interaction between Wnt/β-catenin pathway and microRNAs regulates epithelial-mesenchymal transition in gastric cancer, Int. J. Oncol., 48, 2236–2246.

    CAS  PubMed  Google Scholar 

  29. Chang, C. W., Yu, J. C., Hsieh, Y. H., Yao, C. C., Chao, J. I., Chen, P. M., Hsieh, H. Y., Hsiung, C. N., Chu, H. W., and Shen, C. Y. (2016) MicroRNA-30a increases tight junction protein expression to suppress the epithelial-mesenchymal transition and metastasis by targeting Slug in breast cancer, Oncotarget, 7, 16462–16478.

    PubMed  PubMed Central  Google Scholar 

  30. Qiao, P., Li, G., Bi, W., Yang, L., Yao, L., and Wu, D. (2015) microRNA-34a inhibits epithelial-mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway, BMC Cancer, 15, 469.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nasreen, N., Sukka-Ganesh, B., Johnson, J. A., Sadikot, R. T., Sahn, S. A., and Mohammed, K. A. (2016) MicroRNA-26a promotes epithelial-mesenchymal transition in pleural mesothelial cells, Int. J. Clin. Exp. Pathol., 9, 2927–2938.

    Google Scholar 

  32. Liu, X., Sempere, L. F., Ouyang, H., Memoli, V. A., Andrew, A. S., Luo, Y., Demidenko, E., Korc, M., Shi, W., and Preis, M. (2010) MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors, J. Clin. Invest., 120, 1298–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zou, Y., Gao, J., Wang, H., Wang, Y., Wang, H., and Li, P. (2015) Downregulation of microRNA-630 inhibits cell proliferation and invasion and enhances chemosensitivity in human ovarian carcinoma, Genet. Mol. Res., 14, 8766–8777.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, J. W., Li. Y., Zeng, X. C., Zhang, T., Fu, B. S., Yi, H. M., Zhang, Q., and Jiang, N. (2015) miR-630 overexpression in hepatocellular carcinoma tissues is positively correlated with alpha-fetoprotein, Med. Sci. Monitor, 21, 667–673.

    Article  Google Scholar 

  35. Chen, W., Zhang, Z., Ding, Z., Liang, H., Song, J., Tan, X., Wu, J., Li, G., Zeng, Z., and Zhang, B. (2016) MicroRNA-630 suppresses tumor metastasis through the TGF-β-miR-630-Slug signaling pathway and correlates inversely with poor prognosis in hepatocellular carcinoma, Oncotarget, 7, 22674–22686.

    PubMed  PubMed Central  Google Scholar 

  36. Pasquier, J., Abu-Kaoud, N., Al, H., and Rafii, A. (2015) Epithelial to mesenchymal transition in a clinical perspective, J. Oncol., 792182.

    Google Scholar 

  37. Shamir, E. R., Pappalardo, E., Jorgens, D. M., Coutinho, K., Tsai, W. T., Aziz, K., Auer, M., Tran, P. T., Bader, J. S., and Ewald, A. J. (2014) Twist1-induced dissemination preserves epithelial identity and requires E-cadherin, J. Cell Biol., 204, 839–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beiter, K., Hiendlmeyer, E., Brabletz, T., Hlubek, F., Haynl, A., Knoll, C., Kirchner, T., and Jung, A. (2005) β-Catenin regulates the expression of tenascin-C in human colorectal tumors, Oncogene, 24, 8200–8204.

    CAS  PubMed  Google Scholar 

  39. Laoukili, J., Stahl, M., and Medema, R. H. (2007) FoxM1: at the crossroads of ageing and cancer, Biochim. Biophys. Acta, 1775, 92–102.

    CAS  PubMed  Google Scholar 

  40. Kim, I. M., Ramakrishna, S., Gusarova, G. A., Yoder, H. M., Costa, R. H., and Kalinichenko, V. V. (2005) The Forkhead box M1 transcription factor is essential for embryonic development of pulmonary vasculature, J. Biol. Chem., 280, 22278–22286.

    Article  CAS  PubMed  Google Scholar 

  41. Katoh, M., and Katoh, M. (2004) Human FOX gene family (Review), Int. J. Oncol., 25, 1495–1500.

    CAS  PubMed  Google Scholar 

  42. Halasi, M., and Gartel, A. L. (2013) FOX (M1) news–it is cancer, Mol. Cancer Ther., 12, 245–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, Q., Zhang, N., Jia, Z., Le, X., Dai, B., Wei, D., Huang, S., Tan, D., and Xie, K. (2009) Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression, Cancer Res., 69, 3501–3509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koo, C. Y., Muir, K. W., and Lam, E. F. (2012) FOXM1: from cancer initiation to progression and treatment, Biochim. Biophys. Acta, 1819, 28–37.

    Article  CAS  PubMed  Google Scholar 

  45. Priller, M., Poschl, J., Abrao, L., Von Bueren, A. O., Cho, Y. J., Rutkowski, S., Kretzschmar, H. A., and Schuller, U. (2011) Expression of FoxM1 is required for the proliferation of medulloblastoma cells and indicates worse survival of patients, Clin. Cancer Res., 17, 6791–6801.

    Article  CAS  PubMed  Google Scholar 

  46. Okada, K., Fujiwara, Y., Takahashi, T., Nakamura, Y., Takiguchi, S., Nakajima, K., Miyata, H., Yamasaki, M., Kurokawa, Y., and Mori, M. (2013) Overexpression of Forkhead box M1 transcription factor (FOXM1) is a potential prognostic marker and enhances chemoresistance for docetaxel in gastric cancer, Ann. Surg. Oncol., 20, 1035–1043.

    Article  PubMed  Google Scholar 

  47. Li, L., Li, Z., Kong, X., Xie, D., Jia, Z., Jiang, W., Cui, J., Du, Y., Wei, D., Huang, S., and Xie, K. (2014) Down-regulation of microRNA-494 via loss of SMAD4 increases FOXM1 and beta-catenin signaling in pancreatic ductal adenocarcinoma cells, Gastroenterology, 147, 485–497.

    Article  CAS  PubMed  Google Scholar 

  48. Ke, Y., Zhao, W., Xiong, J., and Cao, R. (2013) miR-149 inhibits non-small-cell lung cancer cells EMT by targeting FOXM1, Biochem. Res. Int., 2013, 506731.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Inoguchi, S., Seki, N., Chiyomaru, T., Ishihara, T., Matsushita, R., Mataki, H., Itesako, T., Tatarano, S., Yoshino, H., Goto, Y., Nishikawa, R., Nakagawa, M., and Enokida, H. (2014) Tumour-suppressive microRNA-24-1 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer, FEBS Lett., 588, 3170–3179.

    Article  CAS  PubMed  Google Scholar 

  50. Li, J., Wang, Y., Luo, J., Fu, Z., Ying, J., Yu, Y., and Yu, W. (2012) miR-134 inhibits epithelial to mesenchymal transition by targeting FOXM1 in non-small cell lung cancer cells, FEBS Lett., 586, 3761–3765.

    Article  CAS  PubMed  Google Scholar 

  51. Karnoub, A. E., and Weinberg, R. A. (2008) Ras oncogenes: split personalities, Nat. Rev. Mol. Cell. Biol., 9, 517–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rajalingam, K., Schreck, R., Rapp, U. R., and Albert, S. (2007) Ras oncogenes and their downstream targets, Biochim. Biophys. Acta, 1773, 1177–1195.

    Article  CAS  PubMed  Google Scholar 

  53. Kang, M. H., Kim, J. S., Seo, J. E., Oh, S. C., and Yoo, Y. A. (2010) BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, Exp. Cell Res., 316, 24–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwei Feng.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 6, pp. 934-943.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Wang, X., Zhu, W. et al. MicroRNA-630 suppresses epithelial-to-mesenchymal transition by regulating FoxM1 in gastric cancer cells. Biochemistry Moscow 82, 707–714 (2017). https://doi.org/10.1134/S0006297917060074

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917060074

Keywords

Navigation