Skip to main content
Log in

The mechanism of intermolecular energy transmission and perception of ultraweak actions by chemical and biological systems

  • Discussion
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A novel concept of intermolecular energy transfer and reception of the ultralow action in living systems is proposed. The concept is based on the methods of nonlinear mathematical physics used in description of energy movement along molecular chains and on quantum mechanical ideas concerning signal formation in anisotropic media. A concept of a molecular cell as an indivisible structural unit and a constituent of a biological (chemical) system has been put forward and substantiated, which manifests collective features of the unity of molecules, physical fields, and energetically strained bound water media in processes of energy transfer and reception. Both intermolecular energy transfer and amplification of the ultralow action has been shown to be the components of a unified energy process in a living system, and the physical basis of both processes is the unity of molecules and water-field media in a molecular cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Blumenfeld, Sovable and Unsolvable Problems of Biological Physics (Editorial URSS, Moscow, 2002) [in Russian].

    Google Scholar 

  2. E. S. Bauer, Theoretical Biology (Izd. VIEM, Moscow-Leningrad, 1935) [in Russian].

    Google Scholar 

  3. E. S. Bauer, Theoretical Biology (Rostok, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  4. G. N. Ling, Physical Theory of the Living State: the Association—Induction Hipothesis (Blaisdell, Waltham, MA, 1962).

    Google Scholar 

  5. G. N. Ling, Life the Cell and Below-Cell L evel; The Hidded History of a Fundamental Revolution in Biology (Pacific Press, N.Y., 2001).

    Google Scholar 

  6. G. N. Ling, Physiol. Chem. Phys. & Med. NMR 35, 91 (2003).

    Google Scholar 

  7. G. H. Pollac, Cells, Gels and the Engines of Life: A New, Unifying Approach to Cell Fungtion (Ebner. & Sons, Seattle, WA, 2001).

    Google Scholar 

  8. A. Szent-Gyorgyi, in Bioenergetics (GUZ Mat.-Fiz. Lit., Moscow, 1960), pp. 54–56 [in Russian].

    Google Scholar 

  9. B. M. Vladimirskii and N. A. Temuriants, Infleunce of Solar Activity on Biosphere-Noosphere. Heliobiology from A.L. Tchizhevsky to Our Days (MIEPU, Moscow, 2000) [in Russian].

    Google Scholar 

  10. E. S. Gorshkov, S. N. Shapovalov, V. V. Sokolovskii, and O. A. Troshichev, Biofizika 45(4), 631 (2000).

    Google Scholar 

  11. T. I. Karu, G. S. Kalendo, V. S. Letokhov, and V. V. Lobko, Kvant. Elektron. 9, 1771 (1982).

    Google Scholar 

  12. T. I. Karu, in Trudy IPLIT RAN (2002), pp. 128–143.

  13. E. B. Burlakova, A. A. Konradov, and I. V. Khudyakov, Izv. AN SSSR, no. 2, 184 (1990).

  14. E. B. Burlakova, Ros. Khim. Zh. XLIII(5), 3 (1999).

    Google Scholar 

  15. V. V. Lednev, Biofizika 41(1), 224 (1996).

    Google Scholar 

  16. V. N. Binhi, Bioelectrochem. Bioenerg. 45, 73 (1998).

    Article  Google Scholar 

  17. C. Eichwald and J. Walleczek, Biophys. J. 71, 623 (1996).

    Article  ADS  Google Scholar 

  18. N. D. Devyatkov, M. B. Golant, et al., Usp. Fiz. Nauk, no. 3 (1973).

  19. A. I. Sidorova and A. P. Zhukovskii, Zh. Strukt. Khim. 12(3), 534 (1971).

    Google Scholar 

  20. N. D. Devyatkov, M. B. Golant, and O. V. Betskii, Millimeter Waves and Their Role in Vital Processes (Radio i Svyaz’, Moscow, 1991) [in Russian].

    Google Scholar 

  21. L. N. Gall’, A. V. Drozdov, and N. R. Gal’, in Selected Works of the IV International Congress (SSPIBIM, 2006), pp. 1–9.

  22. V. V. Sokolovskii, Probl. Kosm. Biol. 43, 194 (1982).

    ADS  Google Scholar 

  23. V. V. Sokolovskii, Vopr. Med. Khim. 34(6), 2 (1988).

    Google Scholar 

  24. H. Westerhoff and K. Van Damm, Thermodynamics and Regulation of Free Energy in Biosystems (Mir, Moscow, 1992) [in Russian].

    Google Scholar 

  25. V. O. Samoilov, Medical Biophysics (SpetsLit, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  26. W. Stiller, Arrhenius Equation and Nonequiibrium Kinetics (Mir, Moscow, 2000) [in Russian].

    Google Scholar 

  27. V. N. Binhi, V. A. Milyaev, D. S. Chernavskii, and A. B. Rubin, Biofizika 51(3), 553 (1996).

    Google Scholar 

  28. V. L. Voeicov and L. V. Beloussov, in Biophotonics and Coherent Systems in Biology, Ed. by V. L. Voeicov, L. V. Beloussov, and T. H. Martynyuk (Springer, 2006), pp. 1–16.

  29. P. M. Wiggins, Life Depends upon Two Kinds of Water. http://www.lsbu.ac.uk/water/monograph200904pw.pdf.

  30. D. Green and R. Goldberger, Molecular Aspects of Life (Mir, Moscow, 1968) [in Russian].

    Google Scholar 

  31. N. A. Bul’enkov, Biofizika 36(2), 181 (1991).

    Google Scholar 

  32. D. Eisenberg and V. Kautsman, Structure and Properties of Water (Gidrometeoizdat, 1975) [in Russian].

  33. A. K. Lyashchenko, in Physicochemical Properties of Water Systems (Izd. St. Petersburg Univ., 1991), pp. 29–42 [in Russian].

  34. S. I. Aksenov, Water and Its Role in Regulation of Biological Processes (Izd. RKhD, 2004) [in Russian].

  35. O. A. Ponomarev and E. E. Fesenko, Biofizika 45(3), 389 (2000).

    Google Scholar 

  36. O. A. Ponomarev, I. P. Susak, E. E. Fesenko, and A. S. Shigaev, Biofizika 47(3), 395 (2002).

    Google Scholar 

  37. E. E. Fesenko, V. I. Popov, V. V. Novikov, and S. S. Khutsyan, Biofizika 47(3), 16 (2002).

    Google Scholar 

  38. E. A. Polyak, Biofizika 36(4), 565 (1991).

    Google Scholar 

  39. M. Chaplin, Water structure and behavior. Sixty three anomalies of water http://www.lsbu.ac.uk/water/anmlies.htmil.

  40. O. Ya. Samoilov, Structure of Water Solutions of Electrolytes and Hydration of Ions (Izd. AN SSSR, Moscow, 1957) [in Russian].

    Google Scholar 

  41. G. Bernal and R. Fowler, Usp. Fiz. Nauk XIV(5), 586.

  42. N. A. Chumaevskii, M. I. Rodnikova, and D. A. Sirotkin, Zh. Neorgan. Khim. 50(4), 634 (2005).

    Google Scholar 

  43. Yu. M. Kessler, V. E. Petrenko, A. K. Lyashchenko, et al., Water: Structure, State, Solvation. Achievements of the Last Years, Ed.by A. M. Kutepov (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  44. V. A. Reznikov, Soznan. Fiz. Real’nost’ 6, 35 (2005).

    Google Scholar 

  45. A. V. Kargapolov and G. M. Zubareva, New Approaches to Determination of the Integral State of Biologically Active Systems (Tver, 2006) [in Russian].

  46. R. I. Mints, S. A. Skopinov, et al., Pis’ma ZhTF 14, 1850 (1988).

    Google Scholar 

  47. S. S. Batsanov, Structural Refractometry (Vyssch. Shk., Moscow, 1976) [in Russian].

    Google Scholar 

  48. M. N. Bukina, V. M. Bakulev, and V. E. Kholmogorov, Influence of a Weak Low-Frequency Magnetic Field on Luminescence of GdCl3 (IY MK SSPIBM, 2006) [in Russian].

  49. N. A. Mel’nichenko, Nuclear Magnetic Relaxation in Sea Water and Aqueous Solutions of Electrolytes (Izd. Dal’nevost. Univ., Vladicostok, 2002) [in Russian].

    Google Scholar 

  50. A. F. Skryshevskii, Structural Analysis of Liquids and Amorphous Bodies (Vyssh. Shk., Moscow, 1980) [in Russian].

    Google Scholar 

  51. L. P. Semijhina, Dielectric and Magnetic Properties of Water in Water Solutions and Bioobjects in Weak Electromagnetic Fields (Izd. TyumGU, 2006) [in Russian].

  52. M. L. Aleksandrov, L. N. Gall’ et al., Pis’ma ZhETF 41(5), 203 (1989).

    ADS  Google Scholar 

  53. S. I. Aksenov, Biofizika 22, 923 (1977).

    Google Scholar 

  54. V. I. Slesarev, Chemistry. Bases of Chemistry of Living Things (Khimiya, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  55. M. M. Nesterov, I. V. Pleshakov, and Ya. A. Fofanov, Nauch. Priborostr. 16(2), 3 (2006).

    Google Scholar 

  56. V. I. Tsifrinovich, Calculation of Echo Signals (SO Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  57. S. D. Zakharov, A. V. Ivanov, et al., Kvant. Electron. 33(2(368)), 149.

  58. V. L. Voeikov, R. Asfaramov, V. Koldunov, et al., Clin. Lab. 49, 569 (2003).

    Google Scholar 

  59. G. A. Domracheev, G. A. Roldyginm and D. A. Selivanovskii, Dokl. RAN 329, 258 (1993).

    Google Scholar 

  60. S. Ikeda, T. Takata, M. Komoda, et al., Phys. Chem. Chem. Phys. 1, 4485 (1999).

    Article  Google Scholar 

  61. L. I. Manevich, Soros. Obshcheobraz. Zh., no. 1, 86 (1996).

  62. E. Del Giudice, S. Doglia, M. Milani, and G. Vitiello, Nucl. Phys. B251, [FS 13], 375 (1985).

  63. I. E. Del Giudies, S. Doglia, and M. Milani, Phys. Scripta 38, 505 (1988).

    Article  ADS  Google Scholar 

  64. A. S. Davydov, Biology and Quantum Mechanics (Pergamon, Oxford, 1982).

    Google Scholar 

  65. A. S. Davydov, Solitons in Bioenergetics (Nauk. Dumka, Kiev, 1986) [in Russian].

    MATH  Google Scholar 

  66. H. Frohlich, Rivista del Nuovo Cim. 7, 399 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  67. H. Frohlich, Advances in Electronics and Electron Physics, Ed. by L. Marton (1980), Vol. 53, p. 85.

  68. N. A. Bul’enkov, Materials of III MK SSPIBM (St. Petersburg, 2003).

  69. L. N. Gall’, Materials of VII International Conference “Cosmos and Biophysics” (Crimea, 2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Gall.

Additional information

Original Russian Text © L.N. Gall, N.R. Gall, 2009, published in Biofizika, 2009, Vol. 54, No. 3, pp. 563–574.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gall, L.N., Gall, N.R. The mechanism of intermolecular energy transmission and perception of ultraweak actions by chemical and biological systems. BIOPHYSICS 54, 396–405 (2009). https://doi.org/10.1134/S0006350909030257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909030257

Key words

Navigation