Skip to main content
Log in

The Dynamic and Statistical Properties of DNA Kinks

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Conformational mobility is one of the most important properties of the DNA molecule. A striking example of this mobility is provided by the formation of regions where the double helix is locally unwound. The resulting so-called open DNA states play an important role in transcription, replication, and denaturation. In a “nonrelativistic” approximation, the open DNA states are often modeled as quasiparticles, or kinks, with a certain mass (mk), velocity (uk), and rest energy (E0 k). When more than one open state forms in a DNA molecule, statistics can be considered for an ensemble of N DNA kinks. The statistical properties of the ensemble are still poorly understood. In this paper the properties were investigated on the basis of recent data on the dynamic characteristics of DNA kinks. It was assumed that the interaction between the kinks is weak, all kinks are identical and the number N of DNA kinks is fixed. The statistical sum Zk, the free energy Fk, the velocity distribution function ρ1(vk), the average energy εk, the heat capacity Cv, k, and the entropy Sk were calculated for the ensemble of N DNA kinks. Temperature dependence curves of these characteristics were obtained and compared for four homogeneous sequences (poly(A), poly(T), poly(G), and poly(C)) and the pBR322 plasmid sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. V. Yakushevich, Methods of Theoretical Physics in Studies on the Properties of Biopolymers (Pushchino, 1990) [in Russian].

    Google Scholar 

  2. M. Peyrard, Nonlinearity 17 (2), 1 (2004). https://doi.org/10.1088/0951-7715/17/2/R01

    Article  ADS  MathSciNet  Google Scholar 

  3. Nonlinear Excitations in Biomolecules, Ed. by M. Peyrard (Springer, Berlin, 1995).

    Google Scholar 

  4. A. Scott, Encyclopedia of Nonlinear Science (Frances and Taylor, New York, 2005).

    MATH  Google Scholar 

  5. M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62 (23), 2755 (1989).

    Article  ADS  Google Scholar 

  6. T. Dauxois, M. Peyrard and A. R. Bishop, Phys. Rev. E 47 (1), 684 (1993). https://doi.org/10.1103/PhysRevE.47.684

    Article  ADS  Google Scholar 

  7. S. W. Englander, N. R. Kallenbach, A. J. Heeger, et al., Proc. Natl. Acad. Sci. U. S. A. 77 (12), 7222 (1980).

    Article  ADS  Google Scholar 

  8. A. A. Grinevich, A. A. Ryasik, and L. V. Yakushevich, Chaos Solit. Fract. 75, 62 (2015). https://doi.org/10.1016/j.chaos.2015.02.009

    Article  ADS  Google Scholar 

  9. L. V. Yakushevich, J. Biol. Phys. 24 (2–4), 131 (1999). https://doi.org/10.1023/A:1005143428994

  10. G. A. Wildes, M. Marty-Roda, S. Cuesta-Lopez, et al., J. Phys. Chem. B 122 (9), 2504 (2018). https://doi.org/10.1021/acs.jpcb.7b11608

    Article  Google Scholar 

  11. A. S. Shigaev, O. A. Ponomarev, and V. D. Lakhno, Mat. Biol. Bioinform. 8 (2), 553 (2013). https://doi.org/10.17537/2018.13.t162

    Article  Google Scholar 

  12. L. V. Yakushevich, Nonlinear Physics of DNA (RKhD, Moscow—Izhevsk, 2007) [in Russian].

  13. L. V. Yakushevich, L. A. Krasnobaev, A. V. Shapovalov, and N. R. Quintero, Biophysics (Moscow) 50 (3), 404 (2005).

    Google Scholar 

  14. L. V. Yakushevich and L. A. Krasnobaeva, Biophysics (Moscow) 61 (2), 241 (2016). https://doi.org/10.1134/S0006350908010041

    Article  Google Scholar 

  15. M. Cadoni, R. De Leo, S. Demelio, and G. Gaeta, J. Nonlinear Math. Phys. 17 (4), 557 (2010). https://doi.org/10.1142/S1402925110001069

    Article  Google Scholar 

  16. S. Vedad and A. Heidari, Progr. Appl. Math. 4 (2), 1 (2012). https://doi.org/10.3968/j.pam.19252502820120402.1520

    Article  Google Scholar 

  17. S. Zdravković, M. V. Satarić, and M. Daniel, Int. J. Modern Phys. B 27 (31), 1350184 (2013). https://doi.org/10.1142/S0217979213501841

    Article  ADS  Google Scholar 

  18. A. Di Garbo, Biophys. Chem. 208 (1), 76 (2016). https://doi.org/10.1016/j.bpc.2015.09.006

    Article  Google Scholar 

  19. L. Liu and Ch. Li, Adv. Math. Phys. 2018, 1–7 (2018). https://doi.org/10.1155/2018/4676281

    Article  Google Scholar 

  20. L. V. Yakushevich and L. A. Krasnobaeva, Math. Biol. Bioinform. 12 (1), 1 (2017). https://doi.org/10.17537/2017.12.1

    Article  Google Scholar 

  21. L. V. Yakushevich and L. A. Krasnobaeva, Biophysics (Moscow) 63 (1) 31 (2018). https://doi.org/10.1134/S0006350918010190

    Article  Google Scholar 

  22. F. Bolivar, R. L. Rodriguez, P. J. Greene, et al., Gene 2 (2), 95 (1977).

    Article  Google Scholar 

  23. G. F. Karavaev, Basic Principles of Statistical Physics (Tomsk. State Univ., Tomsk, 1993) [in Russian].

  24. I. A. Kvasnikov, Thermodynamics and Staistical Physics (Editorial URSS, Moscow, 2010) [in Russian].

    Google Scholar 

  25. I. P. Bazarov, Thermodynamics (Vysshaya Shkola, Moscow, 1991) [in Russian].

    Google Scholar 

  26. A. V. Levanov and E. E. Antipenko, Determination of Thermodynamic Properties by Staistical Methods. Classic Perfect Gas (Moscow State Univ., Moscow, 2006) [in Russian].

    Google Scholar 

  27. A. Sommerfeld, Lectures in Theoretical Physics, Vol. 5: Thermodynamics and Statistical Mechanics (Academic, New York, 1964; Izd. Inostrannoi Literatury, Moscow, 1955).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Yakushevich.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnobaeva, L.A., Yakushevich, L.V. The Dynamic and Statistical Properties of DNA Kinks. BIOPHYSICS 65, 22–27 (2020). https://doi.org/10.1134/S0006350920010091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920010091

Navigation