Skip to main content
Log in

DNA Damage and p53 Restrict Proliferation of Müller Cells in the Mouse Retina in Response to the Influence of N-Methyl-N-Nitrosourea

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Systemic administration of N-methyl-N-nitrosourea in rats resulted in the death of retinal photoreceptors followed by differentiation of retinal Müller glial cells into photoreceptor-like cells [27]. However, mammalian Müller glial cells exhibit an extremely limited proliferative capacity, which correlates with the expression of histone γH2AX and p21 protein. These proteins are known to be components of the cellular response to DNA damage [26]. The restriction of proliferation of human Müller glial cells prevents retinal replacement therapy by cell transplantation. On the other hand, the mechanism that limits the proliferation of Müller glia in the mammalian retina remains to be elucidated. We examined the Müller glial proliferative response and the DNA damage response in Müller glia in the postreplicative stage, as well as the expression of the p53 protein in response to the influence of retinotoxic N-methyl-N-nitrosourea. It was shown that N‑methyl-N-nitrosourea induced retinal degeneration in mice via apoptosis of photoreceptors, whereas the other retinal layers retained intact morphology. Nevertheless, the formation of DNA breaks and alkali-labile sites was observed in all retinal cells 5 h after the N-methyl-N-nitrosourea injection; these formations completely disappeared 15 h after N-methyl-N-nitrosourea injection. By 72 h, a significant increase in the number of DNA breaks in Müller glial cells was observed. The absence of bromodeoxyuridine incorporation into the retinal cells later testifies to the absence of proliferation of Müller glial cells and DNA repair synthesis. At the same time, an increased expression of the p53 protein, a universal marker of DNA damage, was observed in the retina. Thus, our findings support the concept of the “DNA damage response” with respect to Müller glial cells, according to which the DNA damage in Müller glial cell is related to the restricted proliferation of these cells in mice. Postreplicative repair is considered as a probable mechanism of the formation of DNA breaks in postreplicative Müller glial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. A. Jayakody, R. R. Gonzalez-Cordero Ali, and R. A. Pearson, Prog. Retin. Eye Res. 46, 66 (2015).

    Article  Google Scholar 

  2. D. Lamba, M. Karl, and T. Reh, Cell Stem Cell 2, 538 (2008).

    Article  Google Scholar 

  3. J. G. Monzon, N. Hammad, S. D. Stevens, and J. Dancey, Oncologist 17, 384 (2012).

    Article  Google Scholar 

  4. V. A. Tronov and E. I. Nekrasova, Vopr. Onkol. 64, 555 (2019).

    Google Scholar 

  5. A. Tsubura, K. Yoshizawa, M. Kuwata, and N. Uehara, Histol. Histopathol. 25, 933 (2010).

    Google Scholar 

  6. M. O. Karl, S. Hayes, B. R. Nelson, et al., Proc Natl. Acad. Sci. U. S. A. 105, 19508 (2008).

    Article  ADS  Google Scholar 

  7. G. P. Lewis, E. A. Chapin, G. Luna, et al., Mol. Vis. 16, 1361 (2010).

    Google Scholar 

  8. K. Yoshizawa, T. Sasaki, N. Uehara, et al., J. Toxicol. Pathol. 25, 27 (2012).

    Article  Google Scholar 

  9. L. A. Ostrovskaya, V. A. Filov, B. A. Ivin, et al., Ros. Bioterapevt. Zh. 3, 24 (2004).

    Google Scholar 

  10. V. A. Tronov, E. I. Nekrasova, and M. A. Ostrovskii, Tsitologiya 60, 440 (2018).

    Article  Google Scholar 

  11. K. Konca, A. Lankoff, A. Banasik, et al., Mutat. Res. 534, 15 (2003).

    Article  Google Scholar 

  12. M. Yu. Loginova, V. A. Tronov, T. A. Beletskaya, et al., Radiats. Biol. Radioekol. 48, 698 (2008).

    Google Scholar 

  13. The TACS 2 TdT Fluorescein Kit. https://trevigen.com/docs/protocol/protocol_4812-30-K.pdf.

  14. V. A. Tronov and E. M. Konstantinov, Biochemistry (Moscow) 65 (11), 1279 (2000).

    Google Scholar 

  15. D. T. Beranek, Mutat. Res. 231, 11 (1990).

    Article  Google Scholar 

  16. D. Fu, J. A. Calvo, and L. D. Samson, Nat. Rev. Cancer 12, 104 (2012).

    Article  Google Scholar 

  17. L. B. Meira, C. A. Moroski-Erkul, S. L. Green, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 888 (2009).

    Article  ADS  Google Scholar 

  18. M.-C. Koag, Y. Kou, H. Ouzon-Shubeita, and S. Lee, Nucleic Acids Res. 42, 8755 (2014).

    Article  Google Scholar 

  19. V. A. Tronov, E. M. Konstantinov, and I. I. Kramarenko, Biochemistry (Moscow) 67 (7), 730 (2002).

    Article  Google Scholar 

  20. M. Allocca, J. J. Corrigan, K. R. Fake, et al., Oncotarget 8, 68707 (2017).

    Article  Google Scholar 

  21. D. Ahel, Z. Horejsi, N. Wiechens, et al., Science 325, 1240 (2009).

    Article  ADS  Google Scholar 

  22. W. Ying, M. B. Sevigny, Y. Chen, and R. A. Swanson, Proc. Natl. Acad. Sci. U. S. A. 98, 12227 (2001).

    Article  ADS  Google Scholar 

  23. W. Cao, J. Tombran-Tink, R. Elias, et al., Invest. Ophthalmol. Vis. Sci. 42, 1646 (2001).

    Google Scholar 

  24. V. A. Tronov, Yu. V. Vinogradova, M. Yu. Loginova, et al., Tsitologiya 54, 261 (2012).

    Google Scholar 

  25. Y. Ueki, M. O. Karl, S. Sudar, et al., Glia 60, 1579 (2012).

    Article  Google Scholar 

  26. J. Wan, H. Zheng, Z-L. Chen, et al., Vis. Res. 48, 223 (2008)

    Article  Google Scholar 

  27. K. Nomura-Komoike, F. Saitoh, Y. Komoike, and H. Fujieda, Invest. Ophthalmol. Vis. Sci. 57, 1169 (2016).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 16-04-00133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tronov.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Statement on the welfare of animals. All procedures with animals were carried out in accordance with the Regulations of the Ethics Committee of the Emanuel Institute of Biochemical Physics, Russian Academy of Sciences.

Additional information

Translated by M. Batrukova

Abbreviations: MGC, Müller glial cells; BrdU, bromodeoxyuridine; MNU, methylnitrosourea; PBS, phosphate-buffered saline.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tronov, V.A., Nekrasova, E.I. DNA Damage and p53 Restrict Proliferation of Müller Cells in the Mouse Retina in Response to the Influence of N-Methyl-N-Nitrosourea. BIOPHYSICS 65, 460–467 (2020). https://doi.org/10.1134/S0006350920030215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920030215

Keywords:

Navigation