Skip to main content
Log in

The Kinetics of Initiated Oxidation of Phosphatidylcholine Liposomes with Introduced Aloe Extracts and Determination of their Antioxidant Activity

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Numerous species of the genus Aloe have attracted the attention of researchers because of their different biological benefits and their capacity to act as antioxidants. This paper presents a comparative study of the kinetics of the inhibitory effect of ethanol extracts of five species of Aloe, which was made using a model system of the oxidation of phosphatidylcholine liposomes. It was found that plant extracts of A. marlothii and A. congolensis have higher antioxidant activities (by a factor of 13 and 10, respectively) than the best known Aloe species: A. arborescens and A. vera. The total phenolic content values of A. marlothii and A. congolensis are higher than those of A. arborescens and A. vera but to a lesser degree (by a factor of 5–6) than antioxidant activity. This may indicate the presence of very active phenolic antioxidants in A. Marlothii and A. congolensis. An analysis of the influence of extracts introduced into liposomes on liposome size showed that the most active extracts of A. marlothii, A. congolensis, and A. pillansii reduce the average liposome size compared to pure liposomes, and extracts with weaker antioxidant activity increase it, which is probably due to changes in the lipid structure of liposomes by the components of extracts. Based on the results we obtained, A. marlothii, A. congolensis, and A. pillansii are suitable for studying other types of their biological activity that might contribute to new drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. Salehi, S. Albayrak, H. Antolak, et al., Int. J. Mol. Sci. 19, 2843 (2018).

    Article  Google Scholar 

  2. M. Akaberi, Z. Sobhani, B. Javadi, et al., Biomed. Pharmacother. 84, 759 (2016).

    Article  Google Scholar 

  3. D. I. Sanchez-Machado, J. Lopez-Cervantes, R. Sendon, and A. Sanches-Silva, Trends Food Sci. Technol. 61, 94 (2017).

    Article  Google Scholar 

  4. E. Misawa, M. Tanaka, K. Nomaguchi, et al., Agric. Food Chem. 60, 2799 (2012).

    Article  Google Scholar 

  5. I. Cock, In Novel Natural Products: Therapeutic Effects in Pain, Arthritis and Gastro-intestinal Diseases, Ed. by K. Rainsford, M. Powanda, and M. Whitehouse (Springer, Basel, 2015), pp. 179–235.

    Google Scholar 

  6. N. Ghannam, M. Kingston, I. A. Al-Meshaal, et al., Horm. Res. Pediatr. 24, 288 (1986).

    Article  Google Scholar 

  7. R. Lawrence, P. Tripathi, and E. Jeyakumar, Braz. J. Microbiol. 40, 906 (2009).

    Article  Google Scholar 

  8. Q. Pan, H. Pan, H. Lou, et al., Cancer Cell Int. 13, 69 (2013).

    Article  Google Scholar 

  9. S.-Y. Lin, W.-W. La, C.-C. Ho, et al., Anticancer Res. 29, 327 (2009).

    Google Scholar 

  10. M. E. Clement, G.Tringali, D. Triggiani, B. Giardina, Nat. Prod. Commun. 10 (11), 1993 (2015).

    Google Scholar 

  11. H. H. Sazhina, P. V. Lapshin, and N. V. Zagoskina, Khim. Rast. Syr’ya, No. 2, 169 (2015).).

    Google Scholar 

  12. N. P. Palmina, E. L. Maltseva, V. I. Binjukov, et al., Biophysics (Moscow) 63 (1), 53 (2018).

    Google Scholar 

  13. A. H. Thomas, A. Catala, and M. Vignoni, Biochim. Biophys. Acta 1858, 139 (2016).

    Article  Google Scholar 

  14. M. Mosca, A. Cerlie, and L. Ambrosone, Chem. Phys. Lipids 164, 158 (2011).

    Article  Google Scholar 

  15. A. V. Lokhmatikov, N. Voskoboynikova, D. A. Cherepanov, et al., Oxid. Med. Cell. Longevity 1, 1 (2016).

    Article  Google Scholar 

  16. N. N Sazhina, A. S. Antipova, M. G. Semenova, and N. P. Palmina, Russ. J. Bioorg. Chem. 45 (1), 34 (2019).

    Article  Google Scholar 

  17. N. Kuznetsova, A. Kandyba, V. Vostrov, et al., J. Drug Delivery Sci. Technol. 19 (1), 51 (2009).

    Article  Google Scholar 

  18. M. G. Semenova, Food Hydrocolloids 68, 114 (2017).

    Article  Google Scholar 

  19. M. G. Semenova, A. S. Antipova, L. E. Belyakova, et al., Food Hydrocolloids 42, 149 (2014).

    Article  Google Scholar 

  20. M. N. Saprometov, Biochemical Methods in Plant Physiology: Phenolic Compounds and Methods of TheirAnalysis (Moscow, Nauka, 1971) [in Russian].

    Google Scholar 

  21. H. H. Sazhina, I. G. Plashchina, M. G. Semenova, and N. P. Pal’mina, Kolloid. Zh. 82 (1), 89 (2020).

    Google Scholar 

  22. K. Derffel, Statistics in Analyrtical Chemistry (Mir, Moscow, 1994) [in Russian].

  23. Y. Gutterman and E. Chauser-Volfson, Biochem. Syst. Ecol. 28 (9), 825 (2000).

    Article  Google Scholar 

  24. D. N. Olennikov, I. N. Zilfikarov, and T. A. Ibragimov, Khim. Rast. Syr’ya, No. 3, 77 (2010).

    Google Scholar 

  25. L. Lucinia, M. Pellizzonia, R. Pellegrinob, et al., Food Chem. 170, 501 (2015).

    Article  Google Scholar 

  26. D. N. Olennikov, I. N. Zilfikarov, T. A. Ibragimov, et al., Khim. Rast. Syr’ya, No. 3, 83 (2010).

    Google Scholar 

  27. P. A. C. McPherson, A. Bole, K. A. Cruz, et al., Chem. Phys. Lipids 165, 682 (2012).

    Article  Google Scholar 

  28. I. Pinchuk and D. Lichtenberg, Chem. Phys. Lipids 178, 632014 (2014).

    Article  Google Scholar 

  29. E. T. Denisov and I. B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry and Biology (CRC Press, Boca Raton, FL, 2005).

    Book  Google Scholar 

  30. A. Seyoum, K. Asres, and F. K. El-Fiky, Phytochemistry 67, 2058 (2006).

    Article  Google Scholar 

  31. H. Hu, X. Hu, and H. Qiuhui, J. Agric. Food Chem. 51, 7788 (2003).

    Article  Google Scholar 

  32. D. Huang, B. Ou, M. Hampsch-Woodil, et al., J. Agricl. Food Chem. 50, 4437 (2002).

    Article  Google Scholar 

  33. S. Lee, S. G. Do, S. Y. Kim, et al., J. Agric. Food Chem. 60, 11222 (2012).

    Article  Google Scholar 

  34. N. M. Emanuel, E. T. Denisov, and Z. K. Maizus, Chain Reactions of Hydrocarbon Oxidation in Liquid Phase (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  35. N. P. Palmina, E. L. Maltseva, V. I. Binjukov, et al., Biophysics (Moscow) 63 (1), 53 (2018).

    Google Scholar 

  36. A. R. Neves, C. Nunes, H. Amenitsch, and S. Reis, Soft Matter 12, 2118 (2016).

    Article  ADS  Google Scholar 

  37. S. Gal1, L. Pinchuk, and D. Lichtenberg, Chem. Phys. Lipids 126, 95 (2003).

  38. E. A. Tehrany, C. J. F. Kahn, C. Baravian, et al., Colloids Surf., B 95, 75 (2012).

    Article  Google Scholar 

  39. P. Strugała, S. Cyboran-Mikołajczyk, A. Dudra, et al., J. Membr. Biol. 249, 393 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Sazhina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazhina, N.N., Lapshin, P.V. & Zagoskina, N.V. The Kinetics of Initiated Oxidation of Phosphatidylcholine Liposomes with Introduced Aloe Extracts and Determination of their Antioxidant Activity. BIOPHYSICS 66, 420–427 (2021). https://doi.org/10.1134/S0006350921030155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921030155

Navigation