Skip to main content
Log in

Dynamics of the magnetosphere during geomagnetic storms on January 21–22, 2005 and December 14–15, 2006

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The dynamics of large-scale magnetospheric current systems during geomagnetic storms on January 21–22, 2005 and December 14–15, 2006 is investigated using the A2000 model of the magnetospheric magnetic field. Storm development is controlled by both the interplanetary magnetic field and solar wind pressure that create conditions for injection of plasma into the inner magnetosphere. It is demonstrated that the main role in the development of the January 21–22, 2005 magnetic storm was played by a strong impulse of solar wind pressure, while the December 14–15, 2006 storm was initiated by a changed orientation of the interplanetary magnetic field. As a consequence, the Dst variation of the geomagnetic field during the January 21–22, 2005 storm is determined basically by ring current development. On December 14–15, 2006 it is determined by comparable contributions of the ring current and of the magnetotail currents. The results of modeling are confirmed by data on dynamic properties of the fluxes of three populations of ions with energies 30–80 keV (at low latitudes L < 2, and at latitudes below and above the isotropic precipitation boundary) measured by the solar-synchronous satellites of NOAA (POES 15, POES 16, and POES 17).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., et al., What is a geomagnetic storm?, J. Geophys. Res., 1994, vol. 99, no. A4, pp. 5771–5792.

    Article  ADS  Google Scholar 

  2. Tverskoy, B.A., Electric fields in the magnetosphere and origin of trapped radiation in Solar-Terrestrial Physics, Dyer, E.D., Ed., D. Reidel Co., 1972, Part III, pp. 297–317.

    Google Scholar 

  3. Russell, C.T., Ginskey, M., and Petrinec, S.M., Sudden impulses at low-latitude stations: Steady state response for northward interplanetary magnetic field, J. Geophys. Res., 1994, vol. 99, pp. 253–261. doi: 10.1029/93JA02288.

    Article  ADS  Google Scholar 

  4. Li, X., Baker, D.N., Elkington, S., et al., Energetic particle injections in the inner magnetosphere as a response to an interplanetary shock, J. Atm. Sol.-Terr. Phys., 2003, vol. 65, pp. 233–244.

    Article  ADS  Google Scholar 

  5. Peng, Z., Wang, C., Hu, Y.Q., et al., Simulations of observed auroral brightening caused by solar wind dynamic pressure enhancements under different interplanetary magnetic field conditions, J. Geophys. Res., 2011, vol. 116, no. A06217. doi: 10.1029/2010JA016318.

    Google Scholar 

  6. Dessler, A.J. and Parker, E.N., Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 1959, vol. 64, no. 12, pp. 2239–2252. doi: 10.1029/JZ064i012p02239.

    Article  ADS  Google Scholar 

  7. Sckopke, N., A general relation between energy of trapped particles and the disturbance field over the Earth, J. Geophys. Res., 1966, vol. 71, no. 13, pp. 3125–3130.

    Article  ADS  Google Scholar 

  8. Burton, R.K., McPherron, R.L., and Russell, C.T., An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 1975, vol. 80, pp. 4204–4214.

    Article  ADS  Google Scholar 

  9. Alexeev, I.I., Kalegaev, V.V., Belenkaya, E.S., et al., The model description of magnetospheric magnetic field in the course of magnetic storm on January 9–12, 1997, J. Geophys. Res., 2001, vol. 106, no. A11, pp. 25683–25694.

    Article  ADS  Google Scholar 

  10. Greenspan, M.E. and Hamilton, D.C., A test of the Dessler-Parker-Sckopke relation during magnetic storms, J. Geophys. Res., 2000, vol. 105, p. 5419.

    Article  ADS  Google Scholar 

  11. Ganushkina, N.Yu., Pulkkinen, T.I., Kubyshkina, M.V., et al., Modeling the ring current magnetic field during storms, J. Geophys. Res., 2002, vol. 107. doi: 10.1029/2001JA900101.

  12. Tsyganenko, N.A. and Sitnov, M.I., Magnetospheric configurations from a high-resolution data-based magnetic field model, J. Geophys. Res., 2007, vol. 112, no. A6. doi: 10.1029/2007JA012260.

    Google Scholar 

  13. Kalegaev, V.V. and Makarenkov, E.V., Relative importance of ring and tail currents to Dst under extremely disturbed conditions, J. Atm. Sol.-Terr. Phys., 2008, vol. 70, pp. 519–525. doi: 10.1016/j.jastp.2007.09.029.

    Article  ADS  Google Scholar 

  14. Alexeev, I.I., Belenkaya, E.S., Kalegaev, V.V., et al., Magnetic storms and magnetotail currents, J. Geophys. Res., 1996, vol. 101, no. A4, pp. 7737–7747. doi: 10.1029/95JA03509.

    Article  ADS  Google Scholar 

  15. McPherron, R.L., The role of substorms in the generation of magnetic storms, in Magnetic Storms, vol. 98 of Geophys. Monogr. Ser., Tsurutani, B.T., et al., Eds., Washington, DC: AGU, 1997.

    Google Scholar 

  16. Akasofu, S.-I. and Chapman, S., On the asymmetric development of magnetic storm fields in low and middle latitudes, Planet. Space Sci., 1964, vol. 12, pp. 607–626.

    Article  ADS  Google Scholar 

  17. Soraas, F., Aarsnes, K., Oksavik, K., and Evans, D.S., Ring current intensity estimated from low-altitude proton observations, J. Geophys. Res., 2002, vol. 107, no. A7, pp. 1149–1859. doi: 10.1029/2001JA000123.

    Article  Google Scholar 

  18. Lvova, E.A., Sergeev, V.A., and Bagautdinova, G.R., Statistical study of the proton isotropy boundary, Ann. Geophys., 2005, vol. 23, pp. 1311–1316.

    Article  ADS  Google Scholar 

  19. Sergeev, V., Malkov, M., and Mursula, K., Testing the isotropic boundary algorithm method to evaluate the magnetic field configuration in the tail, J. Geophys. Res., 1993, vol. 98, no. A5, pp. 7609–7620. doi: 10.1029/92JA02587.

    Article  ADS  Google Scholar 

  20. Vlasova, N.A. and Kalegaev, V.V., Dynamics of fluxes of protons with energies 30–80 keV during geomagnetic storms on January 21–22, 2015 and December 14–15, 2006 according to data from low orbit satellites, Kosm.. Issled., 2014, vol. 52, no. 6, pp. 449–458. [Cosmic Research, pp. 411–420].

    Google Scholar 

  21. Du, A.M., Tsurutani, B.T., and Sun, W., Anomalous geomagnetic storm of 21–22 January 2005: A storm main phase during northward IMFs, J. Geophys. Res., 2008, vol. 113, A10214. doi: 10.1029/2008JA013284.

    Article  ADS  Google Scholar 

  22. Dandouras, I.S., Re’me, H., Cao, J., and Escoubet, P., Magnetosphere response to the 2005 and 2006 extreme solar events as observed by the Cluster and Double Star spacecraft, Adv. Space Res., 2009, vol. 43, pp. 618–623.

    Article  ADS  Google Scholar 

  23. O’Brien, T.P. and McPherron, R.L., An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 2000, vol. 105, pp. 7707–7719.

    Article  ADS  Google Scholar 

  24. Shue, J.-H., Song, P., Russell, C.T., et al., Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 1998, vol. 103, no. A8, pp. 17691–17700. doi: 10.1029/98JA01103.

    Article  ADS  Google Scholar 

  25. Hakkinen, L., Pulkkinen, T.I., Nevanlinna, H., Pirjola, R.J., and Tanskanen, E.I., Effect of induced currents on Dst and on magnetic variations at midlatitude stations, J. Geophys. Res., 2002, vol. 107. doi: 10.1029/2001JA900130.

  26. Kalegaev, V.V., Alekseev, I.I., Makarenkov, E.V., and Ganyushkina, N.Yu., Modeling the Dst-variation during magnetic storms, Geomagn. Aeron., 2006, vol. 46, no. 5, pp. 596–603.

    Google Scholar 

  27. Mead, G.D., Deformation of the geomagnetic field by the solar wind, J. Geophys. Res., 1964, vol. 69, pp. 1181–1190.

    Article  ADS  MATH  Google Scholar 

  28. Kalegaev, V.V. and Vlasova, N.A., Some peculiarities of longitudinal distribution of proton fluxes at high latitudes, Adv. Space Res., 2011, vol. 48, pp. 2028–2035. doi: 10.1016/j.asr.2011.08.010.

    Article  ADS  Google Scholar 

  29. Soraas, F., Oksavik, K., Aarsnes, K., et al., Storm time equatorial belt—an “image” of RC behavior, Geophys. Res. Lett., 2003, vol. 30, no. 2, pp. 1052–1055. doi: 10.1029/2002GL015636.

    Article  ADS  Google Scholar 

  30. Newell, P.T., Sotirelis, T., Liou, K., et al., A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 2007, vol. 112, A01206. doi: 10.1029/2006JA012015.

    ADS  Google Scholar 

  31. Pavlov, N.N., Tverskaya, L.V., Tverskoy, B.A., and Chuchkov, E.A., Variations of energetic particles of radiation belts during a strong magnetic storm on March 24–26, 1991, Geomagn. Aeron., 1993, vol. 33, no. 6, p. 41.

    Google Scholar 

  32. Dmitriev, A.V., Suvorova, A.V., Chao, J.-K., et al., Anomalous dynamics of the extremely compressed magnetosphere during January 21, 2005, J. Geophys. Res., 2014, vol. 119, no. 2, pp. 877–896.

    Article  Google Scholar 

  33. Yahnina, T.A., Yahnin, A.G., Kangas, J., and Manninen, J., Proton precipitation related to Pc 1 pulsations, Geophys. Res. Lett., 2000, vol. 27, p. 3575.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kalegaev.

Additional information

Original Russian Text © V.V. Kalegaev, N.A. Vlasova, Z. Peng, 2015, published in Kosmicheskie Issledovaniya, 2015, Vol. 53, No. 2, pp. 105–117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalegaev, V.V., Vlasova, N.A. & Peng, Z. Dynamics of the magnetosphere during geomagnetic storms on January 21–22, 2005 and December 14–15, 2006. Cosmic Res 53, 98–110 (2015). https://doi.org/10.1134/S0010952515020033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952515020033

Keywords

Navigation