Skip to main content
Log in

Aerodynamic coefficients of a spinning sphere in a rarefied-gas flow

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A three-dimensional rarefied-gas flow past a spinning sphere in the transitional and near-continuum flow regimes is studied numerically. The rarefaction and compressibility effects on the lateral (Magnus) force and the aerodynamic torque exerted on the sphere are investigated for the first time. The coefficients of the drag force, the Magnus force, and the aerodynamic torque are found for Mach numbers ranging from 0.1 to 2 and Knudsen numbers ranging from 0.05 to 20. In the transitional regime, at a certain Knudsen number depending on the Mach number the Magnus force direction changes. This change is attributable to the increase in the role of normal stresses and the decrease in the contribution of the shear stresses to the Magnus force with decrease in the Knudsen number. A semi-empirical formula for the calculation of the Magnus force coefficient in the transitional flow regime is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.I. Rubinow and J.B. Keller, “The Transverse Force on a Spinning Sphere Moving in a Viscous Fluid,” J. Fluid Mech. 11 Pt 3, 447–459 (1961).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. S.A. Morsi and A.J. Alexander, “An Investigation of Particle Trajectories in Two-Phase Flow Systems,” J. Fluid Mech. 55 Pt 2, 193–208 (1972).

    Article  MATH  ADS  Google Scholar 

  3. N.A. Zarin, Measurement of Non-Continuum and Turbulence Effects on Subsonic Sphere Drag (NASA Report NCR-1585, 1970).

  4. W.R. Lawrence, Free-Flight Range Measurements of Sphere Drag at Low Reynolds Numbers and Low Mach Numbers (Arnold Eng. Development Center. Report AEDC-TR-67-218, 1967).

  5. A.B. Bailey and J. Hiatt, Free-Flight Measurements of Sphere Drag at Subsonic, Transonic, Supersonic, and Hypersonic Speeds for Continuum, Transition, and Near-Free-Molecular Flow Conditions (Arnold Eng. Development Center. Report AEDC-TR-70-291, 1971).

  6. A.B. Bailey and J. Hiatt, “Sphere Drag Coefficients for a Broad Range of Mach and Reynolds Numbers,” AIAA J. 10(11), 1436–1440 (1972).

    Article  ADS  Google Scholar 

  7. C.B. Henderson, “Drag Coefficients of Spheres in Continuum and Rarefied Flows,” AIAA J. 14(6), 707–708 (1976).

    Article  ADS  Google Scholar 

  8. L.E. Sternin, B.N. Maslov, A.A. Shraiber, and A.M. Podvysotskii, Two-Phase Mono- and Polydisperse Gas-Particle Flows [in Russian] (Mashinostroenie, Moscow, 1980).

    Google Scholar 

  9. P.P. Brown and D.F. Lawler, “Sphere Drag and Settling Velocity Revisited,” J. Environment. Eng. 129(3), 222–231 (2003).

    Article  Google Scholar 

  10. Ch.-T. Wang, “Free-Molecular Flow over a Rotating Sphere,” AIAA J. 10(5), 713–714 (1972).

    Article  ADS  Google Scholar 

  11. S.G. Ivanov and A.M. Yashin, “Forces and Moments Acting on Bodies Rotating about a Symmetry Axis in Free Molecular Flow,” Fluid Dynamics 15(3), 449 (1980).

    Article  MATH  Google Scholar 

  12. H. Niazmand and M. Renksizbulut, “Surface Effects on Transient Three-Dimensional Flows Around Rotating Spheres at Moderate Reynolds Numbers,” Computers and Fluids 32(10), 1405–1433 (2003).

    Article  MATH  Google Scholar 

  13. Y. Tsuji, Y. Morikawa, and O. Mizuno, “Experimental Measurements of the Magnus Force on a Rotating Sphere at Low Reynolds Numbers,” Trans. ASME. J. Fluids Eng. 107(4), 484–488 (1985).

    Article  Google Scholar 

  14. B. Oesterle and T. Bui Dinh, “Experiments on the Lift of a Spinning Sphere in a Range of Intermediate Reynolds Numbers,” Experim. Fluids 25(1), 16–22 (1998).

    Article  ADS  Google Scholar 

  15. J.H. Maccoll, “Aerodynamics of a Spinning Sphere,” J. Roy. Aeronaut. Soc. 32 777–798 (1928).

    Google Scholar 

  16. V.A. Naumov, A.D. Solomenko, and V.P. Yatsenko, “Effect of the Magnus Force on the Motion of a Rigid Spherical Body at a High Angular Velocity,” Inzh. Fiz. Zh. 65(3), 287–290 (1993).

    Google Scholar 

  17. N. Chegroun and B. Oesterle, “Etude Numérique de la Trainée, de la Portance et du Couple sur une Sphere en Translation et en Rotation,” (Actes 11éme Congrés Francais Mecanique, Lille-Villeneuve d’Ascq, France, 1993. V. 3), 81–84.

    Google Scholar 

  18. S.C.R. Dennis, S.N. Singh, and D.B. Ingham, “The Steady Flow due to a Rotating Sphere at Low and Moderate Reynolds Numbers,” J. Fluid Mech. 101 Pt 2, 257–279 (1980).

    Article  MATH  ADS  Google Scholar 

  19. K.I. Borg, L.H. Soderholm, and H. Essen, “Force on a Spinning Sphere Moving in a Rarefied Gas,” Phys. Fluids 15(3), 736–741 (2003).

    Article  ADS  Google Scholar 

  20. P.D. Weidman and A. Herczynski, “On the Inverse Magnus Effect in Free-Molecular Flow,” Phys. Fluids. 16(2), L9–L12 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  21. A.N. Volkov, “Numerical Modeling of the Magnus Force and the Aerodynamic Torque on a Spinning Sphere in Transitional Flow,” (Proc. 25th Int. Symp. Rarefied Gas Dynamics, St. Petersburg, Russia, 2006) (Eds. M. Ivanov and A. Rebrov, SBRAS Press, Novosibirsk, 2007), 771–776.

    Google Scholar 

  22. M.N. Kogan, Rarefied-Gas Dynamics [in Russian] (Nauka, Moscow, 1967).

    Google Scholar 

  23. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994).

    Google Scholar 

  24. F.C. Hurlbut, “On the Molecular Interactions between Gases and Solids,” in: Dynamics of Manned Lifting Planetary Entry (Wiley, New York, 1963), 754–777.

    Google Scholar 

  25. V.P. Shidlovskii, Introduction to Rarefied Gas Dynamics [in Russian] (Nauka, Moscow, 1965).

    Google Scholar 

  26. G. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik (Teubner, Leipzig, 1876).

    Google Scholar 

  27. O.M. Belotserkovskii, A.I. Erofeev, and V.E. Yanitskii, “Nonstationary Method of Direct Statistical Simulation of Rarefied Gas Flows,” Zh. Vych. Matem. Mat. Fiz. 20(5), 1174–1204 (1980).

    MathSciNet  Google Scholar 

  28. M.S. Ivanov and S.V. Rogazinskii, “Comparative Analysis of the Algorithms of the Direct Statistical Simulation Method in Rarefied Gas Dynamics,” Zh. Vych. Matem. Mat. Fiz. 28(7), 1058–1070 (1988).

    MathSciNet  Google Scholar 

  29. A.N. Volkov, “The Aerodynamic and Heat Properties of a Spinning Spherical Particle in Transitional Flow,” (Proc. 6th Int. Conf. Multiphase Flow, Leipzig, ICMF’2007, CD, Paper S2 Mon C 6).

  30. V.V. Riabov, “Aerodynamics of a Spinning Cylinder in Rarefied Gas Flows,” J. Spacecraft and Rockets 36(3), 486–488 (1999).

    Article  ADS  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © A.N. Volkov, 2009, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2009, Vol. 44, No. 1, pp. 167–187.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkov, A.N. Aerodynamic coefficients of a spinning sphere in a rarefied-gas flow. Fluid Dyn 44, 141–157 (2009). https://doi.org/10.1134/S0015462809010153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462809010153

Keywords

Navigation