Skip to main content
Log in

Vertical Distribution of Cs-137 in the Catena Soils of Agricultural Landscapes in the Bryansk Region

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper presents data on the vertical distribution of 137Cs of Chernobyl origin in arable and meadow soils to a depth of 40 cm in typical catenary junctions of predpolessie, predopolje, and opolje landscapes with a different density of 137Cs contamination 30 years after the accident at the Chernobyl nuclear power plant. Newly obtained data on the removal of 137Cs beyond the arable horizon presented in the paper indicate that this parameter varies depending on the landscape conditions: it varies in the range of 2.7–17.7% in predpolessie landscapes and in the range of 0.5 to 9% in opolje landscapes. In opolje landscapes, the coefficient of 137Cs removal from the arable horizon was proved to systematically decrease depending on the landscape catenary position: it amounts to 8.5% in the transit zone and is 1.4% in the accumulation zone. The vertical distribution of 137Cs and 210Pbex (excess) in the sod and floodplain soils in the basin of the Kostitsa River was studied to determine the sedimentation rate. Based on the analysis of the distribution of 137Cs in the soil, the sedimentation rate over the past 30 years in various parts of the floodplain was estimated at 0.42 ± 0.08 to 0.58 ± 0.11 cm/year. The average estimated sedimentation rate in the floodplain during approximately 50 past years was, according to the 210Pbex dating was equal to 0.7 ± 0.18 cm/year. The sedimentation rate in the bottom of a ravine was evaluated for sod soils based on the distribution of 210Pbex according to the CRS model for 1961–2016 y. It was revealed that the minimum sedimentation rate of 0.24 cm/year occurred in 1961–1988, and the maximal (0.7 cm/year) in 2000 to 2007.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Almgren and M. Isaksson, “Vertical migration studies of 137Cs from nuclear weapons fallout and the Chernobyl accident,” J. Environ. Radioact. 91 (1–2), 90–102 (2006).

    Article  Google Scholar 

  2. P. G. Appleby, “Three decades of dating recent sediments by fallout radionuclides: a review,” The Holocene, No. 1, 83–93 (2008).

    Article  Google Scholar 

  3. P. G. Appleby and F. Oldfield, “The calculation of 210Pb data assuming a constant rate of supply of unsupported 210Pb to the sediment,” Catena, No. 5, 1–8 (1978).

    Article  Google Scholar 

  4. P. G. Appleby and F. Oldfield, “The assessment of 210Pb data from sites with varying sediment accumulation rates,” Hydrobiologia 103 (1), 29–35 (1983).

    Article  Google Scholar 

  5. G. Arapis, A. Chesnokov, T. Ivanova, V. Potapov, and G. Sokolik, “Evaluation of dose equivalent rate reduction as a function of vertical migration of 137Cs in contaminated soils,” J. Environ. Radioact., no. 2, 251–263 (1999).

  6. R. V. Arutyunyan, L. A. Bol’shov, S. K. Vasil’ev, I. V. Evdokimov, B. F. Petrov, and L. A. Pleskachevskii, “Statistical characteristics of spatial distribution of radionuclide pollution caused by accident at the Chernobyl atomic power station,” Atomic Energy, No. 6, 448–453 (1993).

    Google Scholar 

  7. V. R. Belyaev, P. J. Wallbrink, V. N. Golosov, A. S. Murray, and A. Y. Sidorchuk, “A comparison of methods for evaluating soil redistribution in the severely eroded Stavropol region, southern European Russia,” Geomorphology 65 (3–4), 173–193 (2005).

    Article  Google Scholar 

  8. N. A. Beresford, S. Fesenko, A. Konoplev, L. Skuterud, J. T. Smith, and G. Voigt, “Thirty years after the Chernobyl accident: What lessons have we learnt?,” J. Environ. Radioact. 157, 77–89 (2016).

    Article  Google Scholar 

  9. D. M. Bonotto and R. A García–Tenorio, “Comparative evaluation of the CF:CS and CRS models in 210Pb chronological studies applied to hydrographic basins in Brazil,” Appl. Radiat. Isot. 92, 58–72 (2014).

    Article  Google Scholar 

  10. A. Borisov, V. Linnik, I. Mironenko, A. Sokolov, and A. Saveliev, “Vertical distribution of Cs-137 in arable soils of the Bryansk Region in 2017,” Geophys. Res. Abstr. 21, EGU2019–14141, 2019EGU General Assembly (2019).

  11. D. A. Bugai, R. D. Waters, S. P. Dzhepo, and A. S. Skalskij, “Risks from radionuclide migration to groundwater in the Chernobyl 30–km Zone,” Health Phys. 71(1), 9–18 (1996).

    Article  Google Scholar 

  12. A. A. Bulgakov, A. V. Konoplev, V. E. Popov, Ts. I. Bobovnikova, A. A. Siverina, and I. G. Shkuratova, “Mechanisms of vertical migration of long–lived radionuclides in soil within 30–km zone of the Chernobyl Atomic Power Station,” Pochvovedenie, No. 10, 14–19 (1990).

    Google Scholar 

  13. K. Bunzl, W. Schimmak, L. Zelles, and B. P. Albers, “Spatial variability of the vertical migration of fallout 137Cs in the soil of a pasture, and consequences for long–term predictions,” Radiat. Environ. Biophys. 39, 197–205 (2000).

    Article  Google Scholar 

  14. A. Cremers, A. Elsen, P. De Preter, and A. Maes, “Quantitative analysis of radiocaesium retention in soils,” Nature 335, 247–249 (1988).

    Article  Google Scholar 

  15. V. N. Golosov, Erosional–Accumulative Processes in River Basins of Developed Planes (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  16. Q. He and D. E. Walling, “The distribution of fallout 137Cs and 210Pb in undisturbed and cultivated soils,” Appl. Radiat. Isot. 48 (5), 677–690 (1997).

    Article  Google Scholar 

  17. M. Isaksson and B. Erlandsson, “Experimental–determination of the vertical and horizontal distribution of Cs–137 in the ground,” J. Environmental Radioactivity 27, 141–160 (1995).

    Article  Google Scholar 

  18. Y. A. Ivanov, N. Lewyckyj, S. E. Levchuk, B. S. Prister, S. F. Firsakova, N. P. Arkhipov, S. V. Kruglov, R. M. Alexakhin, J. Sandalls, and S. Askbrant, “Migration of 137Cs and 90Sr from the Chernobyl fallout in Ukrainian, Belarussian and Russian soils,” J. Environ. Radioact. (35), 1–21 (1997).

  19. A. Jarvis, H. I. Reuter, A. Nelson, and E. Guevara, Hole-filled SRTM for the Globe Version 4, available from the CGIAR–CSI SRTM 90m Database (2008).

  20. A. V. Konoplev, V. N. Golosov, V. I. Yoschenko, K. Nanba, Y. Onda, T. Takase and Y. Wakiyama, “Vertical distribution of radiocesium in soils of the area affected by the Fukushima Dai–ichi nuclear power plant accident,” Euras. Soil Sci. 49 (5), 570–581 (2016).

    Google Scholar 

  21. E. Korobova, A. Ermakov, and V. Linnik, “137Cs and 90Sr mobility in soils and transfer in soil–plant systems in the Novozybkov district affected by the Chernobyl accident,” J. Appl. Geochem. 13 (7), 803–814 (1998).

    Article  Google Scholar 

  22. V. K. Kuznetsov, V. S. Anisimov, A. I. Sanzharov, I. V. Geshel’, E. V. Gordienko, and D. V. Krylenkin, “Experimental study of horizontal and vertical migration of radionuclides of the Chernobyl fallout in landscapes of Polessye lowland and Srednerusskaya Rise,” Radioecological Consequences of the Chernobyl Accident: Biological Effects, Migration, and Rehabilitation, Ed. by N. I. Sanzharova and S. V. Fesenko (RAN, Moscow, 2018), pp. 91–114 [in Russian].

    Google Scholar 

  23. E. V. Kvasnikova, O. M. Zhukova, E. D. Stukin, and E. N. Borisenko, and A. E. Samonov, “The role of landscape factors in 137Cs contamination field changes in Bryansk Polessye,” Russ. Meteorol. Hydrol., No. 6, 83–91 (2005).

  24. E. V. Kvasnikova, O. M. Zhukova, E. D. E. N. Borisenko, A. E. Samonov, I. G. Travnikov, and O. S. Kravtsova, “Self–purification of soils from 137Cs in Bryansk Polessye under the influence of landscape factors,” Izv. Ross. Akad. Nauk. Ser. Geograf., No. 4, 62–82 (2006).

  25. V. G. Linnik, “Landscape–hydrological conditions of 137Cs distribution in the floodplain of the Iput River, Bryansk oblast,” Erosion of Soils and Riverbed Processes (Mosk. Gos. Univ., Moscow, (2001), Vol. 13, pp. 120–132 [in Russia].

    Google Scholar 

  26. V. G. Linnik, Landscape Differentiation of Anthropogenic Radionuclides (RAN, Moscow, (2018) [in Russia].

    Google Scholar 

  27. V. G. Linnik, I. V. Mironenko, N. I. Volkova, and A. V. Sokolov, “Landscape–biogeochemical factors of transformation of the Cs-137 contamination field in the Bryansk Region,” Geochem. Int. 55 (10), 887–901 (2017).

    Article  Google Scholar 

  28. V. G. Linnik, A. P. Borisov, and I. V. Mironenko, “Radial distribution of Cs-137, Pb-210, and K-40 in the floodplain soils of the Kostitsa River (Bryansk region) 30 years after the Chernobyl accident,” Biogeochemistry as a Scientific Principle of Steady Development and Preservation of Human Health. Proc. 11thInternational Biogeochemical School Dedicated to 120thAnniversay of V.V. Kovalsky (Tul’sk. Ped. Univ., GEOKHI RAN, Moscow, 2019), pp. 242–246 [in Russian].

  29. D. N. Lipatov, D. V. Manakhov, and L. A. Vezhlivtseva, “Migration of 137Cs in long-fallow and cultivatable soils of the farm landscapes of the Tula region” Vestn. Mosk. Univ., Ser. 17. Pochvoved. 36 (3), 42–48 (2003).

    Google Scholar 

  30. D. N. Lipatov, A. I. Shcheglov, and O. B. Tsvetnova, “Content and distribution of 137Cs in soils of forest and agroecosystems of the Tula region,” Radiats. Biol. Radioekol., No. 5, 616–624 (2007).

  31. B. Lukšienė, D. Marčiulionienė, I. Gudelienė, and F. Schönhofer, “Accumulation and transfer of 137Cs and 90Sr in the plants of the forest ecosystem near the Ignalina Nuclear Power Plant,” J. Environ. Radioact. 116, 1–9 (2013).

    Article  Google Scholar 

  32. L. Mabit, M. Benmansour, J. M. Abril, D. E. Walling, K. Meusburger, A. R. Iurian, C. Bernard, S. Tarján, P. N. Owens, W. H. Blake, and C. Alewell “Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: A review,” Earth–Sci. Rev. (138), 335–351 (2014).

  33. S. V. Mamikhin, “Mathematical model of Cs–137 vertical migration in a forest soil,” J. Environ. Radioact. 28 (2), 161–170 (1995).

    Article  Google Scholar 

  34. S. V. Mamikhin, V. N. Golosov, T. A. Paramonova, E. N. Shamshurina, and M. N. Ivanov,” “Vertical distribution of 137Cs in alluvial soils of the Lokna River floodplain (Tula oblast) long after the Chernobyl Accident and Its simulation,” Eurasian Soil Sci. 49 (12), 1432–1442 (2016).

    Article  Google Scholar 

  35. V. P. Martynenko, V. G. Linnik, A. P. Govorun, and V. P. Potapov, “Comparison of results of field radiometry and sampling during study of 137Cs distribution in soils of the Bryansk region,” Atom Energiya, No. 4, 312–319 (2003).

    Google Scholar 

  36. P. N. Owens and D. E Walling, “Spatial variability of Caesium–137 inventories at reference sites: an example from two contrasting sites in England and Zimbabwe,” Appl. Radiat. Isot. (47), 699–707 (1996).

  37. V. Ramzaev and A. Barkovsky, “Vertical distribution of 137Cs in grassland soils disturbed by moles (Talpa europaea L.),” J. Environ. Radioact. 184–185, 101–108 (2018).

    Article  Google Scholar 

  38. V. Yu. Rusakov, A. P. Borisov, and G. Yu. Solovieva, “Sedimentation rates in different facies-genetic types of bottom sediments in the Kara Sea: evidence from the 210Pb and 137Cs radionuclides,” Geochem. Int. 57 (11), 1185–1200 (2019).

    Article  Google Scholar 

  39. Yu. A. Sapozhnikov, R. A. Aliev, and S. N. Kalmykov, Environmetal Radioactivity. Theory and Practice (BINOM Lab Znanii, Moscow, 2006) [in Russian].

  40. A. I. Shcheglov, Biogeochemistry of Anthropogenic Radionuclides in Forest Ecosystems. 10-Year Studies in the Chernobyl Accident Influence Zone (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  41. Sh. Shiozawa, “Vertical migration of radiocesium fallout in soil in Fukushima,” Agricultural Implications of the Fukushima Nuclear Accident, Ed. by T. M. Nakanishi and K. Tanoi, (SpringerOpen, 2013), pp. 49–60.

    Google Scholar 

  42. J. Sikorski and A. Bluszcz, “Testing applicability of 210Pb method to date sediment of human–made lake Kozłowa Góra,” Geochronometria 22, 63–66 (2003).

    Google Scholar 

  43. W. J. F. Standring, J. E. Brown, M. Dowdall, E. M. Korobova, V. G. Linnik, and A. G. Volosov, “Vertical distribution of anthropogenic radionuclides in cores from contaminated floodplains of the Yenisey River,” J. Environ. Radioact. 12, 1109–1120 (2009).

    Article  Google Scholar 

  44. . H. Velasco, M. Belli, U. Sansone, and S. Menegon, “Vertical migration of radiocesium in surface soils: model implementation and dose–rate computation,” Health Phys. 64 (1), 37–44 (1993)

    Article  Google Scholar 

  45. G. T. Vorob’ev, Scientific–Philosophical Principles of Concept on Soil Cover. Selected Works (BONUB, Bryansk, 2013) [in Russian].

    Google Scholar 

  46. D. E. Walling, “The sediment delivery problem,” J. Hydrol. 65(1–3), 209–237 (1983).

    Article  Google Scholar 

  47. D. E. Walling, V. N. Golosov, A. V. Panin, and Q. He “Use of radiocaesium to investigate erosion and sedimentation in areas with high levels of Chernobyl fallout,” Tracers in Geomorphology (John Wiley. Chichester, 2000), pp. 183–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Linnik.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linnik, V.G., Borisov, A.P., Ivanitsky, O.M. et al. Vertical Distribution of Cs-137 in the Catena Soils of Agricultural Landscapes in the Bryansk Region. Geochem. Int. 58, 1343–1355 (2020). https://doi.org/10.1134/S0016702920100092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920100092

Keywords:

Navigation