Skip to main content
Log in

Significant Tectono-Geophysical Features of the African-Arabian Tectonic Region: An Overview

  • Published:
Geotectonics Aims and scope

Abstract

Satellite gravimetry is recognized now as powerful and reliable tool for regional tectono-geodynamic zonation. The studied region contains intricate geodynamical features (high seismological indicators, active rift systems and collision processes), richest structural arrangement (existence of mosaic blocks of oceanic and continental Earth’s crust of various age), and a number of high-amplitude gravity anomalies and complex geomagnetic pattern. The most hydrocarbon reserves and diamonds, gold, platinum and deposits occur in this region. Comprehensive analysis of satellite derived gravity data by different methodologies were used to develop a sequence of maps specifying crucial properties of the region deep structure. Combined analysis of the compiled gravity map and its transformations with obtained geological data allowed to detecting significant geotectonic features of lithosphere of the region. For instance, Zagros-Makran terrane was classified as a separately developing structural segment (element) of the Arabian craton. Detailed examination of numerous geological sources and their combined examination with the GPS pattern, paleomagnetic, tectonic, geoid isoline map, seismic and other data revealed some sophisticated tectono-geophysical feature apparently located in middle-lower mantle below the Arabian-African region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. L. Aleinikov, V. T. Belikov, and L. V. Eppelbaum, Some Physical Foundations of Geodynamics (Kedem Print. House, Tel Aviv, Israel, 2001).

    Google Scholar 

  2. A. A. Alizadeh, I. S. Guliyev, F. A. Kadirov, and L. V. Eppelbaum, Geosciences of Azerbaijan, in 2 Vols. (Springer, New York, 2016).

  3. O. B. Andersen, P. Knudsen, and P. A. M. Berry, “The DNSC-08GRA global marine gravity field from double retracked satellite altimetry,” J. Geod. 84, 191‒199 (2009).

    Article  Google Scholar 

  4. I. Artemieva, H. Thybo, and M. K. Kaban, “Deep Europe today: Geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga,” in European Lithosphere Dynamics, Vol. 32 of Geol. Soc. London, Mem., Ed. by D. Gee and R. Stephenson (2006), pp. 11‒41.

  5. A. A. Barakat and S. M. R. Kandil, “Diamond in the newly discovered kimberlite and related rocks, Central Eastern Desert, Egypt,” XXXVI International Conference “Magmatism of the Earth and Related Strategic Metal Deposits,” St. Petersburg, Russia, 2019 (2019), pp. 36‒42.

  6. I. D. Bastow, D. Keir, and E. Daly, “The Ethiopia Afar Geoscientific Experiment (EAGLE): Probing the transition from continental rifting to incipient seafloor spreading,” in Volcanism and Evolution of the African Lithosphere, Vol. 478 of Geol. Soc. Am., Spec. Pap., Ed. by L. Beccaluva, G. Bianchini, and M. Wilson (2011), pp. 51‒76.

  7. H. J. Bayer, H. Hötzl, A. R. Jado, B. Ruscher, and W. Voggenreiter, “Sedimentary and structural evolution of the northwest Arabian Red Sea margin,” Tectonophysics 153, 137‒151 (1988).

    Article  Google Scholar 

  8. M. L. Bazhenov and V. S. Burtman, “Eocene paleomagnetism of the Caucasus (southwest Georgia): Oroclinal bending in the Arabian syntaxis,” Tectonophysics 344, 247‒259 (2002).

    Article  Google Scholar 

  9. Z. Ben-Avraham, “Structural framework of the Gulf of Elat (Aqaba), northern Red Sea,” J. Geophys. Res., [Solid Earth Planets] 90, 703‒726 (1985).

  10. Z. Ben-Avraham, A. Ginzburg, J. Makris, and L. Eppelbaum, “Crustal structure of the Levant basin, eastern Mediterranean,” Tectonophysics 346, 23‒43 (2002).

    Article  Google Scholar 

  11. Z. Ben-Avraham, U. Schattner, M. Lazar, J. K. Hall, Y. Ben-Gai, D. Neev, and M. Reshef, “Segmentation of the Levant continental margin, eastern Mediterranean,” Tectonics 25 (2006). https://doi.org/10.1029/2005TC001824

  12. Z. Ben-Avraham, U. ten-Brink, R. Bell, and M. Reznikov, “Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault,” J. Geophys. Res.: Solid Earth 101, 533‒544 (1996).

    Article  Google Scholar 

  13. M. L. Bordenave, “The origin of the Permo-Triassic gas accumulations in the Iranian Zagros foldbelt and contiguous offshore areas: A review of the Paleozoic petroleum system,” J. Pet. Geol. 31, 3‒42 (2008).

    Article  Google Scholar 

  14. G. J. Borradaile, F. Lagroix, T. D. Hamilton, and D.  A. Trebilcock, “Ophiolite tectonics, rock magnetism and paleomagnetism, Cyprus,” Surv. Geophys. 31, 285‒359 (2010).

    Article  Google Scholar 

  15. G. J. Borradaile and K. Lucas, “Tectonics of the Akamas and Mamonia ophiolites, Western Cyprus: Magnetic petrofabrics and paleomagnetism,” J. Struct. Geol. 25, 2053‒2076 (2003).

    Article  Google Scholar 

  16. W. Bosworth, P. Huchon, and K. McClay, “The Red Sea and Gulf of Aden basins,” J. Afr. Earth Sci. 43, 334‒378 (2005).

    Article  Google Scholar 

  17. C. Braitenberg and J. Ebbing, “New insights into the basement structure of the West Siberian Basin from forward and inverse modeling of GRACE satellite gravity data,” J. Geophys. Res.: Solid Earth 114 (2009). https://doi.org/10.1029/2008JB005799

  18. V. Yu. Burmin and L. A. Shumlyanskaya, “The modern seismicity of the Crimea,” Vopr. Inzh. Seismol. 42 (2), 5‒17 (2015).

    Google Scholar 

  19. G. H.-N. Chan, J. Malpas, C. Xenophontos, and C.‑H. Lo, “Magmatism associated with Gondwanaland rifting and Neo-Tethyan oceanic basin development: Evidence from the Mamonia Complex, SW Cyprus,” J. Geol. Soc. (London, U. K.) 165, 699‒709 (2008).

    Article  Google Scholar 

  20. G. L. Davis, “The ages and uranium contents of zircons from kimberlites and associated rocks,” Carnegie Inst. Washington, Year Book 76, 631‒635 (1977).

    Google Scholar 

  21. P. M. Davis and P. D. Slack, “The uppermost mantle beneath the Kenya dome and relation to melting, rifting and uplift in East Africa,” Geophys. Res. Lett. 29 (7), 21-1‒21-4 (2002).

  22. L. Dobrzhinetskaya, P. Mukhin, Q. Wang, R. Wirth, E. O’Bannon, W. Zhao, L. Eppelbaum, and T. Sokhonchuk, “Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Search for a primary source,” Lithos 310–311, 355‒368 (2018).

    Article  Google Scholar 

  23. C. Doubre, A. Déprez, F. Masson, A. Socquet, E. Lewi, R. Grandin, A. Nercessian, P. Ulrich, J.-B. De Chabalier, I. Saad, A. Abayazid, G. Peltzer, A. Delorme, E. Calasis, and T. Wright, “Current deformation in Central Afar and triple junction kinematics deduced from GPS and InSAR measurements,” Geophys. J. Int. 208, 936‒953 (2017).

    Article  Google Scholar 

  24. C. E. Duermeijer, W. Krijgsman, C. G. Langereis, and J. H. Ten Veen, “Post-early Messinian counterclockwise rotations on Crete: Implications for Late Miocene to Recent kinematics of the southern Hellenic arc,” Tectonophysics 298, 177‒189 (1998).

    Article  Google Scholar 

  25. M. N. Elgabry, G. F. Panza, A. A. Badawy, and M. K. Ibrahim, “Imaging a relic of complex tectonics: The lithosphere asthenosphere structure in the Eastern Mediterranean,” Terra Nova 25, 102‒109 (2013).

    Article  Google Scholar 

  26. S. A. El-Quliti, T. B. S. Al-Harbi, M. B. S. Al-Yami, A. B. M. Al-Ghamdi, and M. B. M. Al-Shammari, “Assessment of main parameters of extreme earthquakes in Red Sea, west coast of Saudi Arabia,” Open J. Earthquake Res. 5, 122‒134 (2016).

    Article  Google Scholar 

  27. L. V. Eppelbaum, “Satellite gravimetry (‘Big Data’): A powerful tool for regional tectonic examination and reconstructions,” in Vol. 17 of Horizons in Earth Science Research, Ed. by B. Veress and J. Szigethy (Nova Science Publ., New York, 2017), ch. 4, pp. 54‒86.

  28. L. V. Eppelbaum and Y. I. Katz, “Mineral deposits in Israel: A contemporary view,” in Israel: Social, Economic and Political Developments, Ed. by A. Ya’ari and E. D. Zahavi (Nova Science Publ., New York, 2012), pp. 1‒41.

    Google Scholar 

  29. L. V. Eppelbaum and Y. I. Katz, “Key features of seismo-neotectonic pattern of the Eastern Mediterranean,” Izv., Acad. Sci. Azerb. Rep., Ser.: Earth Sci., No. 3, 29‒40 (2012).

  30. L. V. Eppelbaum and Yu. I. Katz, “Eastern Mediterranean: Combined geological-geophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages,” Mar. Pet. Geol. 65, 198‒216 (2015).

    Article  Google Scholar 

  31. L. V. Eppelbaum and Yu. I. Katz, “Newly developed paleomagnetic map of the easternmost Mediterranean unmasks geodynamic history of this region,” Central Eur. J. Geosci. 7 (1), 95‒117 (2015).

    Google Scholar 

  32. L. V. Eppelbaum and Yu. I. Katz, “Paleomagnetic mapping in various areas of the easternmost Mediterranean based on an integrated geological-geophysical analysis,” in New Development in Paleomagnetic Research, Ed. by L. Eppelbaum (Nova Science Publ., New York, 2015), pp. 15‒52.

    Google Scholar 

  33. L. V. Eppelbaum and Yu. I. Katz, “A new regard on the tectonic map of the Arabian-African region inferred from the satellite gravity analysis,” Acta Geophys. 65, 607‒626 (2017).

    Article  Google Scholar 

  34. L. Eppelbaum, Yu. Katz, J. Klokochnik, J. Kosteletsky, Z. Ben-Avraham, and V. Zheludev, “Tectonic insights into the Arabian-African region inferred from a comprehensive examination of satellite gravity big data,” Global Planet. Change 171, 65‒87 (2018).

    Article  Google Scholar 

  35. L. V. Eppelbaum, A. V. Nikolaev, and Y. I. Katz, “Space location of the Kiama paleomagnetic hyperzone of inverse polarity in the crust of the Eastern Mediterranean,” Dokl. Earth Sci. 457, 710‒714 (2014).

    Article  Google Scholar 

  36. L. V. Eppelbaum, V. L. Vaksman, S. V. Kouznetsov, L. M. Sazonova, S. A. Smirnov, A. V. Surkov, B. Bezlepkin, Y. Katz, N. N. Korotaeva, and G. Belovitskaya, “Discovering of microdiamonds and minerals-satellites in Canyon Makhtesh Ramon (Negev desert, Israel),” Dokl. Earth Sci. 407, 202‒204 (2006).

    Article  Google Scholar 

  37. S. Esperanza and Z. Garfunkel, “Ultramafic xenoliths from the Mt Carmel area (Karem Maharal Volcano), Israel,” Lithos 19, 43‒49 (1986).

    Article  Google Scholar 

  38. C. Faccenna, T. W. Becker, L. Auer, A. Billi, L. Boschi, J. P. Brun, F. A. Capitanio, F. Funiciello, F. Horvàth, L. Jolivet, C. Piromallo, L. Royden, F. Rossetti, and E. Serpelloni, “Mantle dynamics in the Mediterranean,” Rev. Geophys. 52, 283‒332 (2014).

    Article  Google Scholar 

  39. C. Gaina, T. H. Torsvik, van D. J. J. Hinsbergen, S. Medvedev, S. C. Werner, and C. Labails, “The African Plate: A history of oceanic crust accretion and subduction since the Jurassic,” Tectonophysics 604, 4‒25 (2013).

    Article  Google Scholar 

  40. I. G. Gass and D. Masson-Smith, “The geology and gravity anomalies of the Troodos Massif, Cyprus,” Philos. Trans. R. Soc. London, Ser. A 255, 417‒466 (1963).

    Google Scholar 

  41. R. P. George, Jr., “Structural petrology of the Olympus ultramafic complex in the Troodos ophiolite, Cyprus,” Geol. Soc. Am. Bull. 89, 845‒865 (1978).

    Article  Google Scholar 

  42. K. W. Glennie, M. W. H. Clarke, M. G. A. Boeuf, W. F. H. Pilaar, and B. M. Reinhardt, “Inter-relationship of Makran-Oman Mountains belts of convergence,” in The Geology and Tectonics of the Oman Region, Vol. 49 of Geol. Soc. London. Spec. Publ., Ed. by A. H. F. Robertson, M. P. Searle, and A. C. Ries (1990), pp. 773‒786.

  43. S. Godey, R. Bossu, J. Guilbert, and G. Mazet-Roux, “The Euro-Mediterranean Bulletin: A comprehensive seismological bulletin at regional scale,” Seismol. Res. Lett. 77, 460‒474 (2006).

    Article  Google Scholar 

  44. W. L. Griffin, S. E. M. Gain, D. T. Adams, J.-X. Huang, M. Saunders, V. Toledo, N. J. Pearson, and S. Y. O’Reilly, “First terrestrial occurrence of tistarite (Ti2O3): Ultra-low oxygen fugacity in the upper mantle beneath Mount Carmel, Israel,” Geology 44, 815‒818 (2016).

    Article  Google Scholar 

  45. N. P. Grushinsky, The Theory of the Earth Shape (Nauka, Moscow, 2014) [in Russian].

    Google Scholar 

  46. A. A. Halafly, Paleomagnetism of the Lesser Caucasus (Baku, 2006) [in Russian].

    Google Scholar 

  47. A. A. Halafov, “Magnetic investigations of Coniacian–Santonian deposits of Gazakh depression,” Izv. Akad. Nauk Azerb. SSR, Ser. Nauk Zemle, No. 4, 123‒126 (1986).

    Google Scholar 

  48. S. E. Hansen, A. J. Rodgers, S. Y. Schwartz, and A. M. S. Al-Amri, “Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula,” Earth Planet. Sci. Lett. 259, 256‒265 (2007).

    Article  Google Scholar 

  49. B. Henry, C. Homberg, M. Mroueh, W. Hamdan, and W. Higazi, “Rotations in Lebanon inferred from new palaeomagnetic data and implications for the evolution of the Dead Sea Transform system,” in Evolution of the Levant Margin and Western Arabia Platform since the Mesozoic, Vol. 341 of Geol. Soc. London, Spec. Publ., Ed. by C. Homberg and M. Bachman (London, 2010), pp. 269‒285.

  50. C. Hirt, T. Gruber, and W. Featherstone, “Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights,” J. Geod. 85, 723‒740 (2011).

    Article  Google Scholar 

  51. Z. M. Hisarli, “New paleomagnetic constraints on the Late Cretaceous and Early Cenozoic tectonic history of the Eastern Pontides,” J. Geodyn. 52, 114‒128 (2011).

    Article  Google Scholar 

  52. E. H. Ibrahim, H. H. Odah, H. L. El Agami, and M. Abu El Enen, “Paleomagnetic and geological investigation into southern Sinai volcanic rocks and the rifting of the Gulf of Suez,” Tectonophysics 321, 343‒358 (2000).

    Article  Google Scholar 

  53. T. A. Ismailzadeh, Doctoral Dissertation in Geology and Mineralogy (Moscow, 1983).

  54. B. Jahne, H. Scharr, and S. Korkel, Principles of Filter Design: Handbook of Computer Vision and Applications (Acad. Press, Cambridge, 1999), Vol. I.

    Google Scholar 

  55. I. Jiménez-Munt, R. Sabadini, and A. Gardi, “Active deformation in the Mediterranean from Gibraltar to Anatolia inferred from numerical modeling and geodetic and seismological data,” J. Geophys. Res.: Solid Earth 108 (2006). https://doi.org/10.1029/2001JB001544

  56. Y. Jin-Yu, Z. Xun-Hua, Z. Fei-Fei, H. Bo, and T. Zhen-Xing, “Preparation of the free-air gravity anomaly map in the seas of China and adjacent areas using multi-source gravity data and interpretation of the gravity field,” Chin. J. Phys. 57, 872‒884 (2014).

    Google Scholar 

  57. P. R. Johnson, Tectonic Map of Saudi Arabia and Adjacent Areas: Saudi Arab. Minist. Miner. Resour. Tech. Rep. USGS-TR-98-3 (1998).

  58. P. R. Johnson and F. H. Kattan, “Lithostratigraphic revision in the Arabian shield: The impacts of geochronology and tectonic analysis,” Arab. J. Sci. Eng. 33 (1), 3‒16 (2008).

    Google Scholar 

  59. P. R. Johnson, F. H. Kattan, and A. M. Al-Saleh, “Neoproterozoic ophiolites in the Arabian Shield: Field relations and structure,” in Precambrian Ophiolites and Related Rocks, Vol. 13 of Dev. Precambrian Geol., Ed. by T. M. Kusky (2004), pp. 129‒162.

  60. L. Jolivet, C. Faccenna, P. Agard, D. F. de Lamotte, A.  Menant, P. Sternai, and F. Guillocheau, “Neo-Tethys geodynamics and mantle convection: From extension to compression in Africa and a conceptual model for obduction,” Can. J. Earth Sci. 53, 1‒15 (2016).

    Article  Google Scholar 

  61. M. K. Kaban, W. Stolk, M. Tesauro, S. El Khrepy, N. Al-Arifi, F. Beekman, and S. A. P. L. Cloetingh, “3D density model of the upper mantle of Asia based on inversion of gravity and seismic tomography data,” Geochem. Geophys. Geosyst. 17, 4457–4477 (2016).

    Article  Google Scholar 

  62. V. E. Khain, Tectonics of Continents and Oceans (Nauchnyi mir, Moscow, 2001) [in Russian].

  63. B. E. Khesin, V. V. Alexeyev, and L. V. Eppelbaum, Interpretation of Geophysical Fields in Complicated Environments, Vol. 14 of Mod. Approaches Geophys. (Kluwer, Dordrecht, 1996).

  64. A. N. Khramov, Palaeomagnetic Directions and Pole Positions, No. 1 of World Data Center Summary Catalogue, Ser. B (Sov. Geophys. Com. Acad. Sci. USSR, Moscow, 1984).

  65. A. N. Khramov, Paleomagnetology (Springer, Berlin, 1987).

    Book  Google Scholar 

  66. C. Kissel, C. Laj, A. Poisson, and N. Görür, “Paleomagnetic reconstruction of the Cenozoic evolution of the Eastern Mediterranean,” Tectonophysics 362, 199‒217 (2003).

    Article  Google Scholar 

  67. J. Klokočník, J. Kostelecký, L. Eppelbaum, and A. Bezděk, “Gravity disturbances, the Marussi tensor, invariants and other functions of the geopotential represented by EGM 2008,” J. Earth Sci. Res. 2 (3), 88‒101 (2014).

    Article  Google Scholar 

  68. J. Klokočník, J. Kostelecký, and A. Bezděk, “On the detection of the Wilkes Land impact crater,” Earth, Planets Space 70, 135‒147 (2018).

    Article  Google Scholar 

  69. D. Kondopoulou, I. Zananiri, A. Michard, H. Feinberg, A. Atzemoglou, J.-P. Pozzi, and Ph. Voidomatis, “Neogene tectonic rotations in the vicinity of the north Aegean trough: New paleomagnetic evidence from Athos and Samothraki (Greece),” Bull. Geol. Soc. Greece 40, 343‒359 (2007).

    Article  Google Scholar 

  70. C. Krézsek, A. Lăpădat, L. Maţenco, K. Arnberger, V. Barbu, and R. Olaru, “Strain partitioning at orogenic contacts during rotation, strike–slip and oblique convergence: Paleogene–Early Miocene evolution of the contact between the South Carpathians and Moesia Csaba,” Global Planet. Change 103, 63‒81 (2013).

    Article  Google Scholar 

  71. B. W. Levin, E. V. Sazorova, G. M. Steblov, A.  V.  Domanski, A. S. Prytkov, and E. N. Tsyba, “Variations of the Earth’s rotation rate and cyclic processes in geodynamics,” Geod. Geodyn. 8, 206‒212 (2017).

    Article  Google Scholar 

  72. Y. Li, C. Braitenberg, and Y. Yang, “Interpretation of gravity data by the continuous wavelet transform: The case of the Chad lineament (North-Central Africa),” J. Appl. Geophys. 90, 62‒70 (2013).

    Article  Google Scholar 

  73. H. I. Lotfi, “Early Cretaceous counterclockwise rotation of Northeast Africa within the equatorial zone: Paleomagnetic study on Mansouri ring complex, Southeastern Desert, Egypt,” NRIAG J. Astron. Geophys. 4 (1), 1–15 (2015).

    Article  Google Scholar 

  74. J. Makris and R. Rihm, “Shear-controlled evolution of the Red Sea: Pull apart model,” Tectonophysics 198, 441‒466 (1991).

    Article  Google Scholar 

  75. E. Márton, J. Grabowski, D. Plašienka, I. Túnyi, M. Krobicki, J. Haas, and M. Pethe, “New paleomagnetic results from the Upper Cretaceous red marls of the Pieniny Klippen Belt, Western Carpathians: Evidence for general CCW rotation and implications for the origin of the structural arc formation,” Tectonophysics 592, 1‒13 (2013).

    Article  Google Scholar 

  76. A. Menant, L. Jolivet, and B. Vrielynck, “Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterranean region since the late Cretaceous,” Tectonophysics 675, 103‒140 (2016).

    Article  Google Scholar 

  77. J. P. Milesi, D. Frizon de Lamotte, G. de Kock, and F.  Toteu, Tectonic Map of Africa, Scale 1 : 10 000 000 (CCGM‒CGMW, Paris, 2010).

  78. S. H. Motavalli-Anbaran, H. Zeyen, M.-F. Brunet, and V. E. Anderstani, “Crustal and lithospheric structure of the Alborz Mountains, Iran, and surrounding areas from integrated geophysical modeling,” Tectonics 30 (2011). https://doi.org/10.1029/2011TC002934

  79. A. A. Muluneh, M. Cuffaro, and C. Dogloni, “Left-lateral transtension along the Ethiopian Rift and constrains on the mantle-reference plate motions,” Tectonophysics 632, 21‒31 (2014).

    Article  Google Scholar 

  80. G. Muttoni, E. Erba, D. V. Kent, and V. Bachtadse, “Mesozoic Alpine facies deposition as a result of past latitudinal plate motion,” Nature 434, 59‒63 (2005).

    Article  Google Scholar 

  81. A. A. Nikitin, Statistical Processing of Geophysical Data (Tsentr Elektromagn. Issled., Moscow, 1993) [in Russian].

    Google Scholar 

  82. A. A. Nyblade, “The upper-mantle low-velocity anomaly beneath Ethiopia, Kenya, and Tanzania: Constraints on the origin of the African superswell in eastern Africa and plate versus plume models of mantle dynamics,” in Volcanism and Evolution of the African Lithosphere, Vol. 478 of Geol. Soc. Am., Spec. Pap., Ed. by L. Beccaluva, G. Bianchini, and M. Wilson (2011). https://doi.org/10.1130/2011.2478(03)

  83. D. M. Pechersky and T. K. T. Nguyen, Paleomagnetic Directions and Pole Positions: Data for the USSR, No. 4 of World Data Center Catalogue, Ser. B (Sov. Geophys. Com. Acad. Sci. USSR, Moscow, 1979).

  84. A. V. Petrov, G. M. Ermolayeva, and E. V. Solokha, “Recognition of multi-indicator geophysical anomalies by the use of multidimensional hypothesis testing,” Seism. Tekhnol. 6 (2), 24‒28 (2009).

    Google Scholar 

  85. A. V. Petrov, S. V. Zinovkin, D. Yu. Osipenkov, and D. B. Yudin, “Computer technology of statistical and spectrum-correlation data analysis KOSKAD 3D 2011,” Geoinformatika, No. 4, 7‒13 (2011).

    Google Scholar 

  86. R. M. Pollastro, Total Petroleum Systems of the Paleozoic and Jurassic, Greater Ghawar Uplift and Adjoining Provinces of Central Saudi Arabia and Northern Arabian-Persian Gulf, No. 2202-H of U.S. Geol. Surv. Bull. (2003).

  87. R. E. Reilinger, S. McClusky, P. Vernant, S. Lawrence, S. Ergintav, R. Cakmak, H. Ozener, F. Kadirov, I. Guliyev, R. Stepanyan, M. Nadariya, G. Hahubia, S. Mahmoud, K. Sakr, A. ArRajehi, et al., “GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions,” J. Geophys. Res.: Solid Earth 111 (2006). https://doi.org/10.1029/2005JB004051

  88. A. Robertson, “Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions,” Tectonophysics 66, 331‒387 (2004).

    Google Scholar 

  89. Y. Rolland, “Caucasus collisional history: Review of data from East Anatolia to West Iran,” Gondwana Res. 49, 130‒146 (2017).

    Article  Google Scholar 

  90. H. Ron, R. Freund, Z. Garfunkel, and A. Nur, “Block rotation by strike-slip faulting: Structural and paleomagnetic evidence,” J. Geophys. Res., B 89, 6256‒6270 (1984).

  91. R. Rummel, W. Yi, and C. Stummer, “GOCE gravitational gradiometry,” J. Geod. 85, 777‒790 (2011).

    Article  Google Scholar 

  92. R. Said, The Geology of Egypt (Elsevier, New York, 1962).

    Google Scholar 

  93. D. T. Sandwell and W. H. F. Smith, “Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate,” J. Geophys. Res.: Solid Earth 114 (2009). https://doi.org/10.1029/2008JB006008

  94. D. T. Sandwell, E. Garcia, K. Soofi, P. Wessel, M. Chandler, and W. H. F. Smith, “Toward 1-mGal global marine gravity from CryoSat-2, Envisat, and Jason-1,” The Leading Edge 32, 892‒899 (2013).

    Article  Google Scholar 

  95. E. V. Sharkov and C. Khanna, “Evolution of the upper mantle matter within the areas of interplate basaltic magmatism (on example of Western Syria),” Dokl. Russ. Acad. Sci. 297, 684‒686 (1987).

    Google Scholar 

  96. N. S. Shatsky, N. A. Belyaevsky, A. A. Bogdanov, and M. E. Muratov, Tectonic Map of the USSR and Adjacent Countries, Scale 1 : 5 000 000 (Geosgeolizdat, Moscow, 1956).

  97. G. M. Stampfli, C. Hochard, C. Vérard, C. Wilhem, and J. von Raumer, “The formation of Pangea,” Tectonophysics 593, 1‒19 (2013).

    Article  Google Scholar 

  98. R. J. Stern and P. R. Johnson, “Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis,” Earth-Sci. Rev. 101, 29‒67 (2010).

    Article  Google Scholar 

  99. R. J. Stern, P. R. Johnson, A. Krӧner, and B. Yibas, “Neoproterozoic ophiolites of the Arabian-Nubian Shield,” in Precambrian Ophiolites and Related Rocks, Vol. 13 of Dev. Precambrian Geol., Ed. by T. M. Kusky (2004), pp. 95‒128 (2004).

  100. K. M. Tainton, A. M. Seggie, B. A. Bayly, I. Tomlinson, and K. E. Quadling, “Garnet thermobarometry: Implication for mantle heat flow within the Tanzanian craton,” Proceedings of the VII International Kimberlite Conference, Cape Town, South Africa,1998 (Red Roof Design, Cape Town, 1999), pp. 852‒860.

  101. B. Uzel, C. G. Langereis, N. Kaymakci, H. Sözbilir, C. Özkaymak, and M. Özkaptan, “Paleomagnetic evidence for an inverse rotation history of Western Anatolia during the exhumation of Menderes core complex,” Earth Planet. Sci. Lett. 414, 108‒125 (2015).

    Article  Google Scholar 

  102. D. G. van der Meer, D. J. J. van Hinsbergen, and W. Spakman, “Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity,” Tectonophysics 723, 309‒448 (2018).

    Article  Google Scholar 

  103. G. Vannucci, S. Pondrelli, S. Argnani, A. Morelli, P. Gasperini, and E. Boschi, “An Atlas of Mediterranean seismicity,” Ann. Geophys. 47 (Suppl. No. 1), 247‒306 (2004).

    Google Scholar 

  104. A. Véronnet, “Rotation de l’ellipsoide hétérogène et figure exacte de la terre,” J. Math. Pures Appl., Ser. 6 8, 331‒463 (1912).

    Google Scholar 

  105. M. Wilson, A. E. Shimron, J. M. Rosenbaum, and J. Preston, “Early Cretaceous magmatism of Mount Hermon, Northern Israel,” Contrib. Mineral. Petrol. 139, 54–67 (2000).

    Article  Google Scholar 

  106. G. Yirgu, C. J. Ebinger, and P. K. H. Maguire, “The Afar volcanic province within the East African Rift System: Introduction,” in The Afar Volcanic Province within the East African Rift System, Vol. 259 of Geol. Soc. London, Spec. Publ., Ed. by G. Yirgu, C. J. Ebinger, and P. K. H. Maguire (2006), pp. 1‒6.

  107. M. Zare, H. Amini, P. Yazdi, K. Sesetyan, M. B. Demircioglu, D. Kalafat, M. Erdik, D. Giardini, M. A. Khan, and N. Tsereteli, “Recent developments of the Middle East catalog,” J. Seismol. 18, 749‒772 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Prof. E.A. Rogozhin (Institute of the Physics of the Earth RAS, Moscow, Russia) and anonymous reviewer whose valuable comment were helpful in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Eppelbaum.

Additional information

Reviewer: E.A. Rogozhin

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eppelbaum, L.V., Katz, Y.I. Significant Tectono-Geophysical Features of the African-Arabian Tectonic Region: An Overview. Geotecton. 54, 266–283 (2020). https://doi.org/10.1134/S0016852120020041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120020041

Keywords:

Navigation