Skip to main content
Log in

Synthesis of a two-phase nanopowder from prototype human synovial fluid and the use of the nanopowder for the preparation of coatings on titanium plates

  • Published:
Inorganic Materials Aims and scope

Abstract

Using prototype human synovial fluid, we have synthesized a calcium phosphate nanopowder consisting of two crystalline phases (whitlockite and carbonate-containing hydroxyapatite). The nanopowder was used to produce calcium phosphate (monetite) coatings on titanium substrates by microarc oxidation. It has been shown that, with increasing microarc oxidation voltage (from 200 to 300 V), the mass, thickness, roughness parameter, and Ca : P ratio of the coatings increase linearly. Increasing the voltage to 300 V and the calcium phosphate coating growth time to 10 min allows a single-phase coating up to 100 μm in thickness, consisting of monetite nanocrystals, to be produced on a metallic surface and its adhesion strength to be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berchenko, G.N., Osteoarticular diseases, Patologiya (Pathology), Pal’tsev, M.A. et al., Eds., Moscow: Geotar-Med, 2002, pp. 565–597.

    Google Scholar 

  2. Lukina, Yu.S., Bioresorbable injectable calcium phosphate cement for orthopedics and traumatology, Cand. Sci. (Eng.) Dissertation, Moscow, 2010.

    Google Scholar 

  3. Dorozhkin, S.V., Calcium orthophosphates in nature, biology and medicine, Materials, 2009, vol. 2, no. 2, pp. 399–498.

    Article  CAS  Google Scholar 

  4. Ong, J.L. and Chan, D.C.N., Hydroxyapatites and their use as coatings in dental implants: a review, Crit. Rev. Biomed. Eng., 1999, vol. 28, pp. 667–707.

    Article  Google Scholar 

  5. Stepanova, E.V., Gropyanov, V.M., and Mikhailova, I.S., Tribochemical interaction of calcium phosphates with water, Polzunovsk. Vestn., 2006, no. 2, pp. 196–200.

    Google Scholar 

  6. Yanovskaya, A.A., Kuznetsov, V.N., Stanislavov, A.S., Danil’chenko, S.N., and Sukhodub, L.F., Growth of hydroxyapatite coatings on Ti6Al4V substrates from aqueous solutions of various ionic compositions, Vestn. Khar’kovsk. Nats. Univ., Khim., 2013, no. 1085, issue 22 (45), pp. 179–186.

    Google Scholar 

  7. Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medical applications, Usp. Khim., 2010, vol. 79, no. 1, pp. 15–32.

    Article  Google Scholar 

  8. Taylor, J.C., Cuff, S.E., Leger, J.P., Morra, A., and Anderson, G.I., In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study, Int. J. Oral Max. Impl., 2002, vol. 17, pp. 321–330.

    Google Scholar 

  9. Tamini, F.M., Torres, J., Thesguerres, I., Clemente, C., Lopez-Cabarcos, E., and Blanco, L.J., Bone augmentation in rabbit calvariae: comparative study between bio-oss and a novel β-TPC/DCPD granulate, J. Clin. Periodontol., 2006, vol. 33, pp. 922–928.

    Article  Google Scholar 

  10. Font Perez, J., Castro Feo, M.B., Del Olmo Basterrechea, M., Garcia Vazquez, M.D., Rubio Retama, J., Lopez Cabarcos, E., Rueda Rodriguez, C., Tamimi Marino, F., and Hamdan Ali Alkhraisat, M., RF Patent 2491960, 2013.

    Google Scholar 

  11. Navarro, M., Michiardi, A., Castan, O., and Planell, J.A., Biomaterials in orthopaedics, J. R. Soc. Interface, 2008, vol. 5, pp. 1137–1158.

    Article  CAS  Google Scholar 

  12. Biokompozity na osnove kal’tsiifosfatnykh pokrytii, B63 nanostrukturnykh i ul’tramelkozernistykh bioinertnykh metallov, ikh biosovmestimost' i biodegradatsiya (Biocomposites based on Calcium Phosphate Coatings and B63 Nanostructured and Ultrafine Bioinert Metals: Biocompatibility and Biodegradation), Lyakhov, N.Z., Ed., Tomsk: Tomsk. Gos. Univ., 2014.

  13. Gerk, S.A., Sharkeev, Yu.P., Golovanova, O.A., Kulyashova, K.S., Komarova, E.G., and Tolkacheva, T.V., Preparation of biomimetic calcium phosphate coatings on VT1-0 titanium alloy by a microarc method, Vestn. Omsk. Univ., 2015, no. 1 (75), pp. 41–45.

    Google Scholar 

  14. Shashkina, G.A., Preparation of calcium phosphate coatings by a microarc method: structure and properties of a titanium-based biocomposite with calcium phosphate coatings, Cand. Sci. (Eng.) Dissertation, Tomsk, 2006.

    Google Scholar 

  15. Kuz’min, I.I., Hip replacement: history and state of the art, Zh. Zdorov’ya, 2013, no. 2.

    Google Scholar 

  16. Leonova, L.A., Hydroxyapatite synthesis and fabrication of bioactive coatings from hydroxyapatite-based composite materials and ultrahigh-molecular weight polyethylene on titanium, Cand. Sci. (Eng.) Dissertation, Tomsk, 2010.

    Google Scholar 

  17. Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Calcium Phosphate-Based Bioceramics), Moscow: Nauka, 2005.

    Google Scholar 

  18. Lemesheva, S.A., Golovanova, O.A., Izmailov, R.R., Turenkov, S.V., and Muromtsev, I.V., Thermodynamic aspects of hydroxyapatite formation from human synovial fluid, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2010, vol. 53, no. 8, pp. 38–43.

    CAS  Google Scholar 

  19. Petrakova, N.V., Effect of hydroxyapatite nanopowder synthesis and sintering conditions on the microstructure and properties of ceramics, Cand. Sci. (Eng.) Dissertation, Moscow, 2014.

    Google Scholar 

  20. Shaskol’skaya, M.P., Kristallografiya (Crystallography), Moscow: Vysshaya Shkola, 1976.

    Google Scholar 

  21. Isselbacher, K.J., Adams, R.D., Braunwald, E., Petersdorf, R.G., and Wilson, J.D., Harrison’s Principles of Internal Medicine, New York: McGraw-Hill, 1980. 9th ed.

    Google Scholar 

  22. Königsberger, E. and Königsberger, L., Biomineralization—Medical Aspects of Solubility, Chichester: Wiley, 2006.

    Book  Google Scholar 

  23. Frank-Kamenetskaya, O.V., Isomorphous substitutions in the crystal structure of bioapatites studied by Xray structure analysis and IR spectroscopy, Materialy Mezhdunarodnoi nauchnoi konferentsii “Spektroskopiya, rentgenografiya i kristallografiya” (Proc. Int. Sci. conf. Spectroscopy, X-Ray Diffraction, and Crystallography), Kazan, 2005, pp. 238–240.

    Google Scholar 

  24. Pozin, M.E., Tekhnologiya mineral’nykh solei (udobrenii, pestitsidov, promyshlennykh solei, okislov i kislot) (Technology of Mineral Salts: Fertilizers, Pesticides, Industrial Salts, Oxides, and Acids), Leningrad: Khimiya, 1974, part 2.

    Google Scholar 

  25. Desai, T.R., Bhaduri, S.B., and Tas, A.C., A self-setting, monetite (CaHPO4) cement for skeletal repair, Ceram. Eng. Sci. Proc., 2007, vol. 27, pp. 61–69.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gerk.

Additional information

Original Russian Text © S.A. Gerk, O.A. Golovanova, Yu.P. Sharkeev, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 9, pp. 1021–1028.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerk, S.A., Golovanova, O.A. & Sharkeev, Y.P. Synthesis of a two-phase nanopowder from prototype human synovial fluid and the use of the nanopowder for the preparation of coatings on titanium plates. Inorg Mater 52, 955–961 (2016). https://doi.org/10.1134/S0020168516090053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516090053

Keywords

Navigation