Skip to main content
Log in

Growth and Spectroscopic and Magnetic Properties of TbCr3(BO3)4 Crystals

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied and optimized conditions for spontaneous flux growth of TbCr3(BO3)4 crystals. Phase relations in the pseudoternary system TbCr3(BO3)4–K2Mo3O10–B2O3 have been studied in the temperature range 900–1130°C and the single-phase terbium chromium borate crystallization field has been mapped out. It has been shown that increasing the TbCr3(BO3)4 content of the starting high-temperature solution leads to a rhombohedral-to-monoclinic phase transition. Using K2Mo3O10-based high-temperature solutions, we have grown single-phase TbCr3(BO3)4 single crystals or crystals in which the rhombohedral phase (sp. gr. R32) significantly prevails over the monoclinic phase (sp. gr. C2/c). The grown crystals have been characterized by X-ray diffraction techniques, IR spectroscopy, and magnetic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ballman, A.A., A new series of synthetic borates isostructural with the carbonate mineral huntite, Am. Mineral., 1962, vol. 47, pp. 1380–1383.

    CAS  Google Scholar 

  2. Mills, A.D., Crystallographic data for new rare earth borate compounds, RX3(BO3)4, Inorg. Chem., 1962, vol. 1, no. 4, pp. 960–961.https://doi.org/10.1021/ic50004a063

    Article  CAS  Google Scholar 

  3. Leonyuk, N.I. and Leonyuk, L.I., Growth and characterization of RM3(BO3)4 crystals, Prog. Cryst. Growth Charact., 1995, vol. 31, nos. 3–4, pp. 179–278.https://doi.org/10.1016/0960-8974(96)83730-2

    Article  CAS  Google Scholar 

  4. Kaurova, I.A., Gorshkov, D.M., Kuz’micheva, G.M., and Rybakov, V.B., Composition and structure of compounds in the huntite family, Khim. Tekhnol. Neorg. Mater., 2018, vol. 13, no. 16, pp. 42–51. https://doi.org/10.32362/2410-6593-2018-13-6-42-51

    Article  CAS  Google Scholar 

  5. Dorozhkin, L.M., Kuratev, I.I., Leonyuk, N.I., Timchenko, T.I., and Shestakov, A.V., Second harmonic generation in (Nd,Y)Al3(BO3)4 crystals, a new nonlinear active medium, Pis’ma Zh. Eksp. Teor. Fiz., 1981, vol. 7, no. 21, pp. 1297–1299.

    CAS  Google Scholar 

  6. Maltsev, V.V., Volkova, E.A., Mitina, D.D., Leonyuk, N.I., Kozlov, A.B., and Shestakov, A.V., Growth and thermophysical properties of RAl3(BO3)4 (R = Y, Nd, Gd, Lu) and RMgB5O10 (R = Y, La, Gd) crystals, Inorg. Mater., 2020, vol. 56, no. 6, pp. 612–625.

    Article  Google Scholar 

  7. Wang, P., Dekker, P., Dawes, J.M., Piper, J.A., Liu, Y., and Wang, J., Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YAl3(BO3)4 lasers, Opt. Lett., 2000, vol. 25, pp. 731–733.https://doi.org/10.1364/OL.25.000731

    Article  CAS  PubMed  Google Scholar 

  8. Dekker, P., Dawes, J.M., Piper, J.A., Liu, Y., and Wang, J., 1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4, Opt. Commun., 2001, vol. 195, nos. 5–6, pp. 431–436.https://doi.org/10.1016/S0030-4018(01)01347-5

    Article  CAS  Google Scholar 

  9. Chen, X., Luo, Z., and Huang, Y., Modeling of the sum-frequency mixing laser, J. Opt. Soc. Am. B: Opt. Phys., 2001, vol. 18, pp. 645–656.https://doi.org/10.1364/JOSAB.18.000646

    Article  Google Scholar 

  10. Leonyuk, N.I., Maltsev, V.V., Volkova, E.A., Pilipenko, O.V., Koporulina, E.V., Kisel, V.E., Tolstik, N.A., Kurilchik, S.V., and Kuleshov, N.V., Crystal growth and laser properties of new RAl3(BO3)4 (R = Yb, Er) crystals, Opt. Mater., 2007, vol. 30, no. 1, pp. 161–163.https://doi.org/10.1016/j.optmat.2006.11.017

    Article  CAS  Google Scholar 

  11. Zvezdin, A.K., Vorob’ev, G.P., Kadomtseva, A.M., Popov, Yu.F., Pyatakov, A.P., Bezmaternykh, L.N., Kuvardin, A.V., and Popova, E.A., Magnetoelectric and magnetoelastic interactions in NdFe3(BO3)4 multiferroics, JETP Lett., 2006, vol. 83, pp. 508–514.

    Article  Google Scholar 

  12. Liang, K.-C., Chaudhury, R.P., Lorenz, B., Sun, Y.Y., Bezmaternykh, L.N., Temerov, V.L., and Chu, C.W., Giant magnetoelectric effect in HoAl3(BO3)4, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 83, paper 180417.https://doi.org/10.1103/PhysRevB.83.180417

  13. Begunov, A.I., Demidov, A.A., Gudim, I.A., and Eremin, E.V., Features of the magnetic and magnetoelectric properties of HoAl3(BO3)4, JETP Lett., 2013, vol. 97, pp. 528–534.

    Article  CAS  Google Scholar 

  14. Kadomtseva, A.M., Popov, Yu.F., Vorob’ev, G.P., Kostyuchenko, N.V., Popov, A.I., Mukhin, A.A., Ivanov, V.Yu., Bezmaternykh, L.N., Gudim, I.A., Temerov, V.L., Pyatakov, A.P., and Zvezdin, A.K., High-temperature magnetoelectricity of terbium aluminum borate: the role of excited states of the rare-earth ion, Phys. Rev. B: Condens. Matter Mater. Phys., 2014, vol. 89, pp. 014418–014424.https://doi.org/10.1103/PhysRevB.89.014418

    Article  CAS  Google Scholar 

  15. Bezmaternykh, L.N., Temerov, V.L., Gudim, I.A., and Stolbovaya, N.A., Crystallization of trigonal (Tb,Er)(Fe,Ga)3(BO3)4 phases with huntite structure in bismuth trimolybdate-based fluxes, Crystallogr. Rep., 2005, vol. 50, suppl. 1, pp. S97–S99.https://doi.org/10.1134/1.2133981

    Article  CAS  Google Scholar 

  16. Bezmaternykh, L.N., Kharlamova, S.A., and Temerov, V.L., Flux crystallization of trigonal GdFe3(BO3)4 competing with the crystallization of α-Fe2O3, Crystallogr. Rep., 2004, vol. 49, no. 5, pp. 855–857.

    Article  CAS  Google Scholar 

  17. Belokoneva, E.L., Al’shinskaya, L.I., Simonov, M.A., Leonyuk, N.I., Timchenko, T.I., and Belov, N.V., Crystal structure of (Nd,Bi)Fe3[BO3]4, Zh. Strukt. Khim., 1979, vol. 20, no. 3, pp. 542–544.

    CAS  Google Scholar 

  18. Kadomtseva, A.M., Popov, Yu.F., Vorob’ev, G.P., Pyatakov, A.P., Krotov, S.S., Kamilov, K.I., Ivanov, V.Yu., Mukhin, A.A., Zvezdin, A.K., Kuz’menko, A.M., Bezmaternykh, L.N., Gudim, I.A., and Temerov, V.L., Magnetoelectric and magnetoelastic properties of rare-earth iron borates, Fiz. Nizk. Temp., 2010, vol. 36, no. 6, pp. 640–653.

    Google Scholar 

  19. Boldyrev, K.N., Chukalina, E.P., and Leonyuk, N.I., Spectroscopic investigation of rare-earth chromium borates RCr3(BO3)4 (R = Nd, Sm), Phys. Solid State, 2008, vol. 50, no. 9, pp. 1681–1683.

    Article  CAS  Google Scholar 

  20. Kurazhkovskaya, V.S., Dobretsova, E.A., Borovikova, E.Yu., Mal’tsev, V.V., and Leonyuk, N.I., Infrared spectroscopy and the structure of rare-earth chromium borates RCr3(BO3)4 (R = La–Er), J. Struct. Chem., 2011, vol. 52, no. 4, pp. 699–707.

    Article  CAS  Google Scholar 

  21. Bludov, A.N., Savina, Yu.A., Pashchenko, V.A., Gnatchenko, S.L., Mal’tsev, V.V., Kuz’min, N.N., and Leonyuk, N.I., Magnetic properties of a GdCr3(BO3)4 crystal, Fiz. Nizk. Temp., 2018, vol. 44, no. 5, pp. 554–560.

    Google Scholar 

  22. Popova, E.A., Leonyuk, N.I., Popova, M.N., Chukalina, E.P., Boldyrev, K.N., Tristan, N., Klingeler, R., and Buechner, B., Thermodynamic and optical properties of NdCr3(BO3)4, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, no. 5, paper 054446.https://doi.org/10.1103/PhysRevB.76.054446

  23. Maltsev, V.V., Naprasnikov, D.A., Lyasnikov, A.D., Leonyuk, N.I., Gorbachenya K.N., Kisel’ V.E., Yasyukevich A.S., and Kuleshov N.V., Flux growth, thermal properties, and luminescence spectra of (Er,Yb,Lu)Al3(BO3)4 solid solutions, Inorg. Mater., 2018, vol. 54, no. 8, pp. 826–830.

    Article  CAS  Google Scholar 

  24. Levin, E.M., Roth, R.S., and Martin, J.B., Polymorphism of ABO3 type rare earth borates, Am. Mineral., 1961, vol. 46, nos. 9–10, pp. 1030–1055.

    CAS  Google Scholar 

  25. Fedorov, P.P., Morphotropism of rare-earth orthoborates RBO3, J. Struct. Chem., 2019, vol. 60, no. 5, pp. 679–691.https://doi.org/10.26902/JSC_id40256

    Article  CAS  Google Scholar 

  26. ICDD PDF-2 Database, Newtown Square: International Center for Diffraction Data, 2003.

  27. Hong, H.Y.P. and Dwight, K., Crystal structure and fluorescence lifetime of NdAl3(BO3)4, a promising laser material, Mater. Res. Bull., 1974, vol. 9, no. 12, pp. 1661–1665.

    Article  CAS  Google Scholar 

  28. Belokoneva, E.L., Simonov, M.A., Pashkova, A.V., Timchenko, T.I., and Belov, N.V., Crystal structure of the high-temperature monoclinic phase of the neodymium aluminum borate NdAl3(BO3)4, Dokl. Akad. Nauk SSSR, 1980, vol. 255, no. 4, pp. 854–858.

    CAS  Google Scholar 

  29. Fausti, D., Nugroho, A.A., van Loosdrecht, P.H.M., Klimin, S.A., Popova, M.N., and Bezmaternykh, L.N., Raman scattering from phonons and magnons in RFe3(BO3)4, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 74, no. 2, p. 024403.https://doi.org/10.1103/PhysRevB.74.024403

    Article  CAS  Google Scholar 

  30. Dobretsova, E.A., Boldyrev, K.N., Popova, M.N., Chernyshev, V.A., Borovikova, E.Y., Maltsev, V.V., and Leonyuk, N.I., Vibrational spectroscopy of GdCr3(BO3)4: quantitative separation of crystalline phases, J. Phys.: Conf. Ser., 2016, vol. 737, paper 012035.https://doi.org/10.1088/1742-6596/737/1/012035

Download references

ACKNOWLEDGMENTS

The magnetic properties of the terbium chromium borate were studied with the participation of T. Zajarniuk and A. Szewczyk from the Institute of Physics, Polish Academy of Sciences (Warsaw).

Funding

The investigation of phase formation and crystal growth of TbCr3(BO3)4 were supported by the Russian Science Foundation, project no. 19-12-00235. The magnetic characterization of the crystals was supported in part by the Russian Foundation for Basic Research, grant no. 18-29-12091mk. The spectroscopic work was supported by the Russian Science Foundation, grant no. 19-12-00413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kuzmin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, N.N., Maltsev, V.V., Volkova, E.A. et al. Growth and Spectroscopic and Magnetic Properties of TbCr3(BO3)4 Crystals. Inorg Mater 56, 828–835 (2020). https://doi.org/10.1134/S0020168520080087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520080087

Keywords:

Navigation