Skip to main content
Log in

An Algorithm for Designing of Cascaded Helical Flux Compression Generator

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Cascaded helical flux compression generators (Cascaded-HFCG) are widely used to produce powerful current pulses in many industries, while there is no specific method to design these generators in any books or articles. In this paper, firstly some mechanical and electrical criteria are described, and then an algorithm is proposed based on these criteria. A computer code is written using MATLAB based on the proposed algorithm and some programs are prepared in COMSOL to calculate electrical parameters of the generators which can be used in the design procedure. The validity of the proposed algorithm is verified by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Altgilbers, L.L., Grishnaev, I., Smith, I.R., Tkach, Y., Brown, M.D.J., Novac, B.M., and Tkach, I., Magnetocumulative Generators, in Magnetocumulative Generators, New York: Springer, 2000. https://doi.org/10.1007/978-1-4612-1232-4_3.

  2. Atchison, W.L., Goforth, J.H., Lindemuth, I.R., and Reinovsky, R.E., Proc. 12th IEEE Int. Pulsed Power Conference, Monterey, CA, 1999, p. 332. https://doi.org/10.1109/PPC.1999.825478

  3. Magnetocumulative Generators−Pulsed Energy Sources, Demidov, V.A., Plyashkevich, L.N., and Selemir, V.D., Eds., Sarov: Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics, 2012, vol. 1, p. 231.

    Google Scholar 

  4. Freeman, J.R., McGlaun, J.M., Thompson, S.L., and Cnare, E.C., in Megagauss Physics and Technology, Boston, MA: Springer, 1980, p. 205.

    Google Scholar 

  5. White, D.A., Rieben, R.N., and Wallin, B.K., Proc. Int. Conference on Megagausse Magnetic Field Generation and Related Topics, Herľany, November 5−10, 2006, p. 371. https://doi.org/10.1109/MEGAGUSS.2006.4530704

  6. Kiuttu, G.F., Chase, J.B., Chato, D.M., and Peterson, G.G., Proc. Int. Conference on Megagausse Magnetic Field Generation and Related Topics, Herľany, November 5−10, 2006, p. 255, https://doi.org/10.1109/MEGAGUSS.2006.4530686

  7. Agrawal, J.P., High Energy Materials: Propellants, Explosives and Pyrotechnics, Weinheim: John Wiley and Sons, 2010.

    Book  Google Scholar 

  8. Explosively Driven Pulsed Power, Helical Magnetic Flux Compression Generators, Neuber, A.A., Ed., Berlin, Heidelberg: Springer, 2005.

    Google Scholar 

  9. Herlach, F., Pulsed Magnetic Field Generators and Their Practical Application, in Megagauss Physics and Technology, New York: Springer, 1980, p. 1. https://doi.org/10.1007/978-1-4684-1048-8

    Google Scholar 

  10. Gover, J.E., Stuetzer, O.M. and Johnson, J.L., Megagauss Physics and Technology, Boston, MA: Springer, 1980, p. 163, https://doi.org/10.1007/978-1-4684-1048-8_15.

  11. Baird, J. and Worsey, P.N., Proc. 28th IEEE Int. Conference on Plasma Science and 13th IEEE Int. Pulsed Power Conference, Las Vegas, NV, June 17–22, 2001, vol. 1, p. 94. https://doi.org/10.1109/PPPS.2001.960709

  12. Baird, J., Worsey, P.N., and Schmidt, M., Proc. 28th IEEE Int. Conference on Plasma Science and 13th IEEE Int. Pulsed Power Conference, Las Vegas, NV, June 17–22, 2001, vol. 1, p. 953. https://doi.org/10.1109/PPPS.2001.960830

  13. Baird, J. and Worsey, P.N., IEEE Trans. Plasma Sci., 2002, vol. 30, no. 5, p. 1647, https://doi.org/10.1109/TPS.2002.805379

    Article  ADS  Google Scholar 

  14. Kiuttu, G.F. and Chase, J.B., Proc. IEEE Pulsed Power Conference, Monterey, CA, 2005, p. 435. https://doi.org/10.1109/ppc.2005.300682

  15. Haurylavets, V.V. and Tikhomirov, V.V., Math. Models Comput. Simul., 2013. vol. 5, no. 4, p. 334. https://doi.org/10.1134/S2070048213040054

    Article  Google Scholar 

  16. Novac, B.M. and Smith, I.R., Electromagn. Phenom., 2003, vol. 3, no. 4, p. 490.

    Google Scholar 

  17. Demidov, V.A., IEEE Trans. Plasma Sci., 2010, vol. 38, no. 8, p. 1773. https://doi.org/10.1109/TPS.2010.2049751

    Article  ADS  Google Scholar 

  18. Pavlovskii, A.I., Lyudaev, R.Z., Zolotov, V.A., Seryoghin, A.S., Yuryzhev, A.S., Kharlamov, M.M., Shuva-lov, A.M., Gurin, V.Ye., Spirov, G.M., and Makaev, B.S., in Megagauss Physics and Technology, Boston: Springer, 1980, p. 557. https://doi.org/10.1007/978-1-4684-1048-8_53.

  19. Chernyshev, V.K., Zharinov, E.J., Demidov, V.A., and Kazakov, S.A., in Megagauss Physics and Technology, Boston: Springer, 1980, p. 641. https://doi.org/10.1007/978-1-4684-1048-8_58.

  20. Novac, B.M., Enache, M.C., Smith, I.R., and Stewardson, H.R., Laser Part. Beams, 1997, vol. 15, no. 3, p. 397. https://doi.org/10.1017/S026303460001096X

    Article  ADS  Google Scholar 

  21. Novac, B.M., Smith, I.R., Stewardson, H.R., Senior, P., Vadher, V.V., and Enache, M.C., J. Phys. D: Appl. Phys., 1995, vol. 28, no. 4, p. 807. https://doi.org/10.1088/0022-3727/28/4/027

    Article  ADS  Google Scholar 

  22. Wang, Y., Zhang, J., Chen, D., Cao, S., Li, D., and Liu, C., Rev. Sci. Instrum., 2013, vol. 84, no. 1, p. 014703. https://doi.org/10.1063/1.4775488

    Article  ADS  Google Scholar 

  23. Dong-Qun Chen, PhD Dissertation, Changsha Univ., 2015.

  24. Shurupov, A.V., Fortov, V.E., Koslov, A.V., Leont’ev, A.A., Shurupova, N.P., Zavalova, V.E., Dudin, S.V., Mintsev, V.B., and Ushnurtsev, A.E., Proc. 14th Int. Conference on Megagauss Magnetic Field Generation and Related Topics (MEGAGAUSS-2012), Maui, Hawaii, October 14−19, 2012, p. 1. https://doi.org/10.1109/MEGAGAUSS.2012.6781431

  25. Anderson, C.S., Neuber, A.A., Young, A.J., Krile, J.T., Elsayed, M.A., and Kristiansen, M., Proc. IEEE Pulsed Power Conference, Chicago, IL, 2011, p. 513. https://doi.org/10.1109/PPC.2011.6191476

  26. Appelgren, P., Licentiate Dissertation, Stockholm: KTH Royal Institute of Technology, 2008.

  27. Tucker, T.J. and Toth, R.P., EBW1: A Computer Code for the Prediction of the Behavior of Electrical Circuits Containing Exploding Wire Element, Albuquerque, NM: Sandia National Laboratories, 1975. https://doi.org/10.2172/4229184

    Google Scholar 

  28. Appelgren, P., Doctoral Thesis, Stockholm: KTH Royal Institute of Technology, 2011.

  29. Bola, M.S., Madan, A.K., and Singh, M., Def. Sci. J., 1992, vol. 42, no. 3, p. 157. https://doi.org/10.14429/dsj.42.4375

    Article  Google Scholar 

  30. Freeman, B.L., Boydston, J.C., Ferguson, J.M., Lindeburg, B.A., Luginbill, A.D., and Tutt, T.E., Proc. 14th IEEE Int. Pulsed Power Conference, Dallas, TX, 2003, vol. 2, p. 1081. https://doi.org/10.1109/PPC.2003.1277999

  31. Young, A., Neuber, A., and Kristiansen, M., IEEE Trans. Plasma Sci., 2010, vol. 38, no. 8, p. 1794. https://doi.org/10.1109/TPS.2010.2048723

    Article  ADS  Google Scholar 

  32. Snow, Ch., Formulas for Computing Capacitance and Inductance, Washington, DC: US Government Printing Office, 1954, vol. 544.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Rezaeealam.

APPENDIX

APPENDIX

The flowchart of the proposed algorithm in this paper is as follows:

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarifar, M., Rezaeealam, B. & Mir, A. An Algorithm for Designing of Cascaded Helical Flux Compression Generator. Instrum Exp Tech 62, 838–849 (2019). https://doi.org/10.1134/S0020441220010066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220010066

Navigation