Skip to main content
Log in

Magnetically Induced Anomalous Dichroism of Atomic Transitions of the Cesium D2 Line

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Transitions FeFg = ΔF = ±2 between the excited and ground levels of the hyperfine structure of the Cs D2 atomic line in an external magnetic field of 300–3000 G have been studied for the first time with the use of σ+ and σ circularly polarized radiation. Selection rules forbid these transitions in zero magnetic field. At the same time, the probabilities of these transitions in a magnetic field increase significantly; for this reason, we refer to these transitions as magnetically induced transitions. The following rule has been found for the intensities of 24 magnetically induced Fg = 3 → Fe = 5 and Fg = 4 → Fe = 2 transitions: the intensities of magnetically induced transitions with ΔF = +2 are maximal (the number of such magnetically induced transitions is also maximal) in the case of σ+ polarized radiation, whereas the intensities of magnetically induced transitions with ΔF = −2 are maximal (the number of such transitions is also maximal) in the case of σ σ+ and σ polarized radiation can reach several orders of magnitude; i.e., anomalous circular dichroism is observed. For an experimental test, absorption spectra of a Cs-filled nanocell with the thickness equal to half the wavelength of resonant laser radiation = 852 nm have been analyzed in order to separately detect magnetically induced transitions. The experiment is in good agreement with the theory. Possible applications have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Meschede, Optics, Light and Lasers (Wiley-VCH, Weinheim, 2007).

    MATH  Google Scholar 

  2. D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics, An Exploration through Problems and Solutions (Oxford Univ. Press, Oxford, UK, 2010).

    Google Scholar 

  3. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford Univ. Press, New York, 2010).

    MATH  Google Scholar 

  4. P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr, Phys. Rev. A 42, 2766 (1990).

    Article  ADS  Google Scholar 

  5. E. B. Aleksandrov, G. I. Khvostenko, and M. P. Chaika, Interference of Atomic States (Nauka, Moscow, 1991; Springer, Berlin, Heidelberg, 1993).

    Google Scholar 

  6. A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, Laser Phys. Lett. 11, 055701 (2014).

    Article  ADS  Google Scholar 

  7. S. Scotto, D. Ciampini, C. Rizzo, and E. Arimondo, Phys. Rev. A 92, 063810 (2015).

    Article  ADS  Google Scholar 

  8. A. Sargsyan, E. Klinger, H. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, and D. Sarkisyan, J. Opt. Soc. Am. B 34, 776 (2017).

    Article  ADS  Google Scholar 

  9. M. Ilchen, N. Douguet, T. Mazza, et al., Phys. Rev. Lett. 118, 013002 (2017).

    Article  ADS  Google Scholar 

  10. A. Sargsyan, G. Hakhumyan, R. Mirzoyan, and D. Sarkisyan, JETP Lett. 98, 441 (2013).

    Article  ADS  Google Scholar 

  11. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).

    Article  ADS  Google Scholar 

  12. G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).

    Article  ADS  Google Scholar 

  13. A. Sargsyan, A. Tonoyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, and D. Sarkisyan, Europhys. Lett. 110, 23001 (2015).

    Article  ADS  Google Scholar 

  14. J. Keaveney, I. G. Hughes, A. Sargsyan, D. Sarkisyan, and C. S. Adams, Phys. Rev. Lett. 109, 233001 (2012).

    Article  ADS  Google Scholar 

  15. A. Sargsyan, E. Pashayan-Leroy, C. Leroy, Yu. Malakyan, and D. Sarkisyan, JETP Lett. 102, 487 (2015).

    Article  ADS  Google Scholar 

  16. A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan, A. Wojciechowski, and W. Gawlik, Opt. Lett. 39, 2270 (2014).

    Article  ADS  Google Scholar 

  17. E. J. Angstmann, T. H. Dinh, and V. V. Flambaum, Phys. Rev. A 72, 052108 (2005).

    Article  ADS  Google Scholar 

  18. E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).

    Article  ADS  Google Scholar 

  19. M. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, Comput. Phys. Commun. 189, 162 (2015).

    Article  ADS  Google Scholar 

  20. B. A. Olsen, B. Patton, Y. Y. Jau, and W. Happer, Phys. Rev. A 84, 063410 (2011).

    Article  ADS  Google Scholar 

  21. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, Opt. Lett. 37, 3405 (2012).

    Article  ADS  Google Scholar 

  22. A. Sargsyan, A. Papoyan, I. G. Hughes, Ch. S. Adams, and D. Sarkisyan, Opt. Lett. 42, 1476 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sargsyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Tonoyan, A., Hakhumyan, G. et al. Magnetically Induced Anomalous Dichroism of Atomic Transitions of the Cesium D2 Line. Jetp Lett. 106, 700–705 (2017). https://doi.org/10.1134/S0021364017230126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017230126

Navigation