Skip to main content
Log in

Effect of the mechanochemical treatment of a V2O5/MoO3 oxide mixture on its properties

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The mechanochemical treatment of a V2O5/MoO3 oxide mixture (V/Mo = 70/30 at %) was performed in planetary and vibratory mills under varying treatment times and media. The resulting samples were characterized using XRD analysis, micro-Raman spectroscopy, and XPS; their specific surface areas and catalytic activities in n-butane and benzene oxidation reactions were determined. It was found that the treatment of the oxide mixture in water resulted in chaotic degradation of the parent oxides, a decrease in crystallite sizes, and an increase in the specific surface area at a sufficiently uniform oxide distribution over the sample. The treatment in ethanol was accompanied by an anisotropic deformation of the V2O5 crystal by layer sliding in parallel to the vanadyl plane (010) and a chaotic degradation of MoO3 crystals. This process was accompanied by the partial nonuniform supporting of vanadium oxide crystals onto the surface of molybdenum oxide to increase the V/Mo ratio on the sample surface. In this case, the particle size of oxides decreased and the specific surface areas of samples increased. It was found that the treatment of the oxide mixture in air (dry treatment) resulted in the most significant decrease in the sizes of V2O5 and MoO3 crystals and a growth in the specific surface area. The amorphization of the parent oxides and the formation of MoV2O8 were observed as the treatment time was increased; in this case, an excess of amorphous vanadium oxide was supported onto the surface of this compound. It was found that, in all types of mechanochemical treatment, the binding energies of the core electrons of vanadium and molybdenum remained almost unchanged to indicate the constancy of the oxidation states of these elements. Mechanochemical treatment resulted in an increase in the activity of the samples in n-butane and benzene oxidation reactions and in an increase in the selectivity of maleic anhydride formation. In this case, an increase in the specific catalytic activity of the samples correlated with a decrease in the crystallite size of vanadium oxide, whereas selectivity correlated with an increase in the relative concentration of the V2O5 plane (010). In these reactions, samples after dry treatment exhibited a maximum activity, which can be related to the formation of MoV2O8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avvakumov, E., Senna, M., and Kosowa, N., Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies, Boston: Kluwer, 2001.

    Google Scholar 

  2. Rusanov, A.I., Termodinamichesie osnovy mekhanokhimii (Thermodynamic Foundations of Mechanochemistry), St. Petersburg: Nauka, 2006.

    Google Scholar 

  3. Fernandez-Bertran, J.F., Pure Appl. Chem., 1999, vol. 71, no. 4, p. 581.

    Article  CAS  Google Scholar 

  4. Boldyrev, V.V. and Tkacova, K., J. Mater. Synth. Process., 2000, vol. 8, nos. 3–4, p. 121.

    Article  CAS  Google Scholar 

  5. Steinike, U. and Tkacova, K., J. Mater. Synth. Process., 2000, vol. 8, nos. 3–4, p. 197.

    Article  CAS  Google Scholar 

  6. Grigor’eva, T.F., Barinova, A.P., and Lyakhov, N.Z., Usp. Khim., 2001, vol. 70, no. 1, p. 52.

    Google Scholar 

  7. Boldyrev, V.V., Usp. Khim., 2006, vol. 75, no. 3, p. 203.

    Google Scholar 

  8. Subbotina, I.R., Shelimov, B.N., and Kazanskii, V.B., Kinet. Katal., 1998, vol. 39, no. 1, p. 87 [Kinet. Catal. (Engl. Transl.), vol. 39, no. 1, p. 80].

    Google Scholar 

  9. Navalikhina, M.D. and Krylov, O.V., Usp. Khim., 1998, vol. 67, no. 7, p. 656.

    CAS  Google Scholar 

  10. Molchanov, V.V. and Buyanov, R.A., Usp. Khim., 2000, vol. 69, no. 5, p. 476.

    Google Scholar 

  11. Molchanov, V.V. and Buyanov, R.A., Kinet. Katal., 2001, vol. 42, no. 3, p. 406 [Kinet. Catal. (Engl. Transl.), vol. 42, no. 3, p. 366].

    Article  Google Scholar 

  12. Shirokov, Yu.G., Mekhanokhimiya v tekhnologii katalizatorov (Mechanochemistry in Catalyst Technology), Ivanovo: Ivanov. Gos. Khim.-Tekhnol. Univ., 2005.

    Google Scholar 

  13. Rougier, A., Soiron, S., Haihal, I., Aymard, L., Taouk, B., and Tarascon, J.M., Powder Technol., 2002, vol. 128, nos. 2–3, p. 139.

    Article  CAS  Google Scholar 

  14. Varda, M., Molnar, A., Mulas, G., Mohai, M., Bertoti, I., and Cocco, G., J. Catal., 2002, vol. 206, no. 1, p. 71.

    Article  Google Scholar 

  15. Pakhomov, N.A. and Buyanov, R.A., Kinet. Katal., 2005, vol. 46, no. 5, p. 711 [Kinet. Catal. (Engl. Transl.), vol. 46, no. 5, p. 669].

    Article  Google Scholar 

  16. Leite, L., Stonkus, V., Edolfa, K., Ilieva, L., Plyasova, L., and Zaikovskii, V., Appl. Catal., A, 2006, vol. 311, no. 1, p. 86.

    CAS  Google Scholar 

  17. Margolis, L. Ya., Okislenie uglevodorodov na geterogennykh katalizatorakh (Oxidation of Hydrocarbons on Heterogeneous Catalysts), Moscow: Khimiya, 1977.

    Google Scholar 

  18. Golodets, G.I., Geterogenno-kataliticheskoe okislenie organicheskikh veshchestv (Heterogeneous Catalytic Oxidation of Organic Substances), Kiev: Naukova Dumka, 1978.

    Google Scholar 

  19. Gorshkova, T.P., Tarasova, D.V., Oden’kova, I.P., Andrushkevich, T.V., and Nikoro, T.A., Kinet. Katal., 1984, vol. 25, no. 1, p. 195.

    CAS  Google Scholar 

  20. Shimanskaya, M.V., Leitis, L.Ya., Skolmeistere, R.A., Iovel’, I.G., and Golender, L.O., Vanadievye katalizatory okisleniya geterotsiklicheskikh soedinenii (Vanadium Catalysts for Oxidation of Heterocyclic Compound), Riga: Zinatne, 1990.

    Google Scholar 

  21. Bielanski, A. and Najbar, M., Appl. Catal., A, 1997, vol. 157, no. 2, p. 223.

    Article  CAS  Google Scholar 

  22. Centi, G., Cavani, F., and Trifiro, F., Selective Oxidation by Heterogeneous Catalysis, New York: Plenum, 2001.

    Google Scholar 

  23. Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Akademkniga, 2004.

    Google Scholar 

  24. Avakumov, E.G., Anufrienko, V.F., Vosel’, S.V., Gadzhieva, F.S., Kalinina, N.G., and Poluboyarov, V.A., Sib. Khim. Zh., 1987, no. 2, issue 1, p. 41.

  25. Yang, H. and McCormock, P.G., J. Solid State Chem., 1994, vol. 110, no. 1, p. 136.

    Article  CAS  Google Scholar 

  26. Mestl, G., Srinivasan, T.K.K., and Knozinger, H., Langmuir, 1995, vol. 11, no. 21, p. 3027.

    Article  CAS  Google Scholar 

  27. Mestl, G., Verbuggen, N.F.D., and Knozinger, H., Langmuir, 1995, vol. 11, no. 21, p. 3035.

    Article  CAS  Google Scholar 

  28. Mestl, G., Srinivasan, T.K.K., and Knozinger, H., Langmuir, 1995, vol. 11, no. 21, p. 3795.

    Article  CAS  Google Scholar 

  29. Zazhigalov, V.A., Haber, J., Stoch, J., Kharlamov, A.I., Bogutskaya, L.V., Bacherikova, I.V., and Kowal, A., Solid State Ionics, 1997, vols. 101–103, p. 1257.

    Article  Google Scholar 

  30. Kirichenko, O.A., Pauli, I.A., and Poluboyarov, V.A., Neorgan. Mater., 1997, vol. 33, no. 9, p. 1 [Inorg. Mater. (Engl. Transl.), vol. 33, no. 9, p. 924].

    Google Scholar 

  31. Zazhigalov, V.A., Kharlamov, A.I., Bacherikova, I.V., Komashko, G.A., Khalameida, S.V., Bogutskaya, L.V., Byl’, O.G., Stokh, E., and Khaber, E., Teor. Eksp. Khim., 1998, vol. 34, no. 3, p. 180.

    Google Scholar 

  32. Bogutskaya, L.V., Khalameida, S.V., Zazhigalov, V.A., Kharlamov, A.I., Lyashenko, L.V., and Byl’, O.G., Teor. Eksp. Khim., 1999, vol. 35, no. 4, p. 257.

    Google Scholar 

  33. Shubin, A.A., Lapina, O.B., Bosch, E., Spengler, J., and Knozinger, H., J. Phys. Chem. B, 1999, vol. 103, no. 17, p. 3138.

    Article  CAS  Google Scholar 

  34. Su, D.S., Roddatis, V., Willinger, M., Weinberg, G., Kitzelmann, E., Schlogl, R., and Knozinger, H., Catal. Lett., 2001, vol. 74, no. 3, p. 169.

    Article  CAS  Google Scholar 

  35. Poluboyarov, V.A., Chumachenko, N.N., and Avakumov, E.G., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1989, no. 6, p. 130.

  36. Molchanov, V.V., Plyasova, L.M., Goidin, V.V., Lapina, O.B., and Zaikovskii, I.I., Neorgan. Mater., 1995, vol. 31, no. 9, p. 1225.

    Google Scholar 

  37. Zazhigalov, V.A., Haber, J., Stoch, J., Pyatnitskaya, A.I., Komashko, G.A., and Belousov, V.M., Appl. Catal., A, 1993, vol. 96, no. 2, p. 135.

    Article  CAS  Google Scholar 

  38. Zazhigalov, V.A., Kinet. Katal., 2002, vol. 43, no. 4, p. 558 [Kinet. Catal. (Engl. Transl.), vol. 43, no. 4, p. 514].

    Article  Google Scholar 

  39. Coulston, G.W., Thompson, E.W., and Herron, N., J. Catal., 1996, vol. 163, no. 1, p. 122.

    Article  CAS  Google Scholar 

  40. Siegbahn, S., ESCA, Atomic, Molecular and Solid State Structures Studied by Means of Electron Spectroscopy, Uppsala: Almquist and Wiksell, 1967.

    Google Scholar 

  41. Nemoshkalenko, V.V. and Aleshin, V.G., Elektronnaya spektroskopiya kristallov (Electronic Spectroscopy of Crystals), Kiev: Naukova Dumka, 1976.

    Google Scholar 

  42. Nefedov, V.N., Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii (X-Ray Photoelectron Spectroscopy of Chemical Compounds), Moscow: Khimiya, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zazhigalov.

Additional information

Original Russian Text © V.A. Zazhigalov, S.V. Khalameida, N.S. Litvin, I.V. Bacherikova, J. Stoch, L. Depero, 2008, published in Kinetika i Kataliz, 2008, Vol. 49, No. 5, pp. 724–733.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zazhigalov, V.A., Khalameida, S.V., Litvin, N.S. et al. Effect of the mechanochemical treatment of a V2O5/MoO3 oxide mixture on its properties. Kinet Catal 49, 692–701 (2008). https://doi.org/10.1134/S0023158408050145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158408050145

Keywords

Navigation