Skip to main content
Log in

Quantum chemical study of the mechanism of the catalytic oxyethylation of ethylene glycol on phosphorus-doped titanium dioxide: The role of the surface phosphoryl and hydroxyl groups of the catalyst

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

DFT calculations of the oxyethylation pathways of monoethylene glycol (MEG) and diethylene glycol (DEG) were performed on a model fragment of phosphorus-doped titanium dioxide (anatase). It was shown that the surface hydroxyl group of titanium dioxide, whose proton initiates C-O bond cleavage in the ethylene oxide molecule, plays the key role in the activation of the molecule. At the same time, the phosphoryl group -P(OH)2O activates the reactant molecule R (MEG, DEG, etc.) and carries out the synchronous proton transfer from R to the hydroxyl oxygen atom of titanium dioxide, thus restoring the catalyst structure and closing the catalytic cycle. This restructuring occurs synchronously in one step. The substitution of the catalyst hydroxyl groups by alkoxyl groups can influence oxyethylation occurring via the bimolecular nucleophilic substitution mechanism and can poison the catalyst in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weissermel, K. and Arpe, H.-J., Industrial Organic Chemistry, Weinheim: Wiley-VCH, 1997, 3rd ed.

    Book  Google Scholar 

  2. Chinn, H. and Kumamoto, T., Chemical Economics Handbook [2010]. http://www.sriconsulting.com/CEH/Public/Reports/652.4000/. Cited June 17, 2012.

    Google Scholar 

  3. US Patent 7164048, 2007.

  4. Dyment, O.N., Kazanskii, K.S., and Miroshnikov, A.M., Glikoli i drugie proizvodnye okisei etilena i propilena (Glycols and Other Derivatives of Ethylene and Propylene Oxides), Moscow: Khimiya, 1976.

    Google Scholar 

  5. Bialowas, E. and Szymanowski, J., Ind. Eng. Chem. Res., 2004, vol. 43, p. 6267.

    Article  CAS  Google Scholar 

  6. Kozlovskii, R.A., Yushchenko, V.V., Kitaev, L.E., Bukhtenko, O.V., Voloshchuk, A.M., Vasil’eva, L.N., and Tsodikov, M.V., Russ. Chem. Bull., 2002, vol. 51, no. 6, p. 967.

    Article  CAS  Google Scholar 

  7. Tsodikov, M.V., Bukhtenko, O.V., Slivinskii, E.V., Slastikhina, L.N., Voloshchuk, A.M., Kriventsov, V.V., and Kitaev, L.E., Russ. Chem. Bull., 2000, vol. 49, no. 11, p. 1803.

    Article  CAS  Google Scholar 

  8. Tsodikov, M.V., Slivinskii, E.V., Yushchenko, V.V., Kitaev, L.E., Kriventsov, V.V., Kochubei, D.I., and Teleshev, A.T., Russ. Chem. Bull., 2000, vol. 49, no. 12, p. 2003.

    Article  CAS  Google Scholar 

  9. Kozlovskiy, R.A., Shvets, V.F., Koustov, A.V., Kitaev, L.E., Yushchenko, V.V., Kriventsov, V.V., Kochubey, D.I., and Tsodikov, M.V., Chem. Sustainable Dev., 2003, vol. 11, p. 123.

    CAS  Google Scholar 

  10. Khandal, R.K., Kaushik, S., Seshadri, G., and Khandal, D., Handbook of Detergents, Part F: Production, Boca Raton, Fla.: CRC, 2009, p. 491.

    Google Scholar 

  11. Zavelev, D.E., Tsodikov, M.V., Zhidomirov, G.M., and Kozlovskii, R.A., Kinet. Catal., 2011, vol. 52, no. 5, p. 659.

    Article  CAS  Google Scholar 

  12. Davydov, A.A. and Shepot’ko, M.L., Theor. Exp. Chem., 1988, vol. 24, no. 6, p. 676.

    Article  Google Scholar 

  13. Shepot’ko, M.L. and Davydov, A.A., Theor. Exp. Chem., 1991, vol. 27, no. 2, p. 210.

    Article  Google Scholar 

  14. Carrizosa, I. and Munuera, G., J. Catal., 1977, vol. 49, p. 174.

    Article  CAS  Google Scholar 

  15. Di Serio, M., Iengo, P., Gobetto, R., Bruni, S., and Santacesaria, E., J. Mol. Catal. A: Chem., 1996, vol. 112, p. 235.

    Article  Google Scholar 

  16. Improta, R., Di Serio, M., and Santacesaria, E., J. Mol. Catal. A: Chem., 1999, vol. 137, p. 169.

    Article  CAS  Google Scholar 

  17. Granovsky, A.A., Firefly version 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html

  18. Parr, R.G. and Yang, W., Density-Functional Theory of Atoms and Molecules, New York: Oxford Univ. Press, 1989.

    Google Scholar 

  19. Becke, A.D., Phys. Rev. A: At. Mol. Opt. Phys., 1986, vol. 33, p. 2786.

    Article  CAS  Google Scholar 

  20. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.

    Article  CAS  Google Scholar 

  21. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B: Condens. Matter, 1988, vol. 37, p. 785.

    Article  CAS  Google Scholar 

  22. Hehre, W.J., Ditchfield, R., and Pople, J.A., J. Chem. Phys., 1972, vol. 56, p. 2257.

    Article  CAS  Google Scholar 

  23. Hariharan, P.C. and Pople, J.A., Theor. Chim. Acta, 1973, vol. 28, p. 213.

    Article  CAS  Google Scholar 

  24. Francl, M.M., Petro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J., and Pople, J.A., J. Chem. Phys., 1982, vol. 77, p. 3654.

    Article  CAS  Google Scholar 

  25. Rassolov, V., Pople, J.A., Ratner, M., and Windus, T.L., J. Chem. Phys., 1998, vol. 109, p. 1223.

    Article  CAS  Google Scholar 

  26. Hirshfeld, F., Theor. Chim. Acta, 1977, vol. 44, p. 129.

    Article  CAS  Google Scholar 

  27. Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., and Weinhold, F., NBO 5.0, Madison: Theoretical Chemistry Inst., Univ. of Wisconsin, 2001.

    Google Scholar 

  28. Mulliken, R.S., J. Chem. Phys., 1955, vol. 23.

  29. Zhurko, G.A., ChemCraft. http://www.chemcraftprog.com/

  30. Van Alsenoy, C., Enden, L., and Schafer, L., J. Mol. Struct. THEOCHEM, 1984, vol. 108, p. 121.

    Article  Google Scholar 

  31. Oie, T., Topol, I., and Burt, S., J. Phys. Chem., 1994, vol. 98, p. 1121.

    Article  CAS  Google Scholar 

  32. Yeh, T.-S., Chang, Y.-P., Su, T.-M., and Chao, I., J. Phys. Chem., 1994, vol. 98, p. 8921.

    Article  CAS  Google Scholar 

  33. Reiling, S., Brickmann, J., Schlenkrich, M., and Bopp, P.A., J. Comput. Chem., 1996, vol. 17, p. 133.

    Article  CAS  Google Scholar 

  34. Nagy, P.I., Dunn, IIIW.J., Alagona, J., and Ghio, C., J. Am. Chem. Soc., 1991, vol. 113, p. 6719.

    Article  CAS  Google Scholar 

  35. Cramer, C.J. and Truhlar, D.G., J. Am. Chem. Soc., 1994, vol. 116, p. 3892.

    Article  CAS  Google Scholar 

  36. Nagy, P.I., Dunn, W.J. III, Alagona, J., and Ghio, C., J. Am. Chem. Soc., 1992, vol. 114, p. 4752.

    Article  CAS  Google Scholar 

  37. Saiz, L., Padro, J.A., and Guardia, E., J. Chem. Phys., 2001, vol. 114, p. 3187.

    Article  CAS  Google Scholar 

  38. Matsuura, H., Hiraishi, M., and Miyazawa, T., Spectrochim. Acta, Part A, 1972, vol. 28, p. 2299.

    Article  CAS  Google Scholar 

  39. Tadokoro, H., Chatani, Y., Yoshihara, T., Tahara, S., and Murahashi, S., Makromol. Chem., 1964, vol. 73, p. 109.

    Article  CAS  Google Scholar 

  40. Wang, R.L.C., Kreuzer, H.J., and Grunze, M., Phys. Chem. Chem. Phys., 2000, vol. 2, p. 3613.

    Article  CAS  Google Scholar 

  41. Gejji, S.P., Tegenfeldt, J., and Lindgren, J., Chem. Phys. Lett., 1994, vol. 226, p. 427.

    Article  CAS  Google Scholar 

  42. Jaffe, R.L., Smith, G.D., and Yoon, D.Y., J. Phys. Chem., 1993, vol. 97, p. 12745.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Zavelev.

Additional information

Original Russian Text © D.E. Zavelev, G.M. Zhidomirov, R.A. Kozlovskii, 2013, published in Kinetika i Kataliz, 2013, Vol. 54, No. 2, pp. 166–176.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavelev, D.E., Zhidomirov, G.M. & Kozlovskii, R.A. Quantum chemical study of the mechanism of the catalytic oxyethylation of ethylene glycol on phosphorus-doped titanium dioxide: The role of the surface phosphoryl and hydroxyl groups of the catalyst. Kinet Catal 54, 157–167 (2013). https://doi.org/10.1134/S002315841302016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841302016X

Keywords

Navigation