Skip to main content
Log in

Zeolite ZSM-5 containing copper ions: The effect of the copper salt anion and NH4OH/Cu2+ ratio on the state of the copper ions and on the reactivity of the zeolite in DeNO x

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Isotherms of copper cation sorption by H-ZSM-5 zeolite from aqueous and aqueous ammonia solutions of copper acetate, chloride, nitrate, and sulfate are considered in terms of Langmuir’s monomolecular adsorption model. Using UV-Vis diffuse reflectance spectroscopy, IR spectroscopy, and temperatureprogrammed reduction with hydrogen and carbon monoxide, it has been demonstrated that the electronic state of the copper ions is determined by the ion exchange and heat treatment conditions. The state of the copper ions has an effect on the redox properties and reactivity of the Cu-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with propane and in N2O decomposition. The amount of Cu2+ that is sorbed by zeolite H-ZSM-5 from aqueous solution and is stabilized as isolated Cu2+ cations in cationexchange sites of the zeolite depends largely on the copper salt anion. The quantity of Cu(II) cations sorbed from aqueous solutions of copper salts of strong acids is smaller than the quantity of the same cations sorbed from the copper acetate solution. When copper chloride or sulfate is used, the zeolite is modified by the chloride or sulfate anion. Because of the presence of these anions, the redox properties and nitrogen oxides removal (DeNO x ) efficiency of the Cu-ZSM-5 catalysts prepared using the copper salts of strong acids are worse than the same characteristics of the sample prepared using the copper acetate solution. The addition of ammonia to the aqueous solutions of copper salts diminishes the copper salt anion effect on the amount of Cu(II) sorbed from these solutions and hampers the nonspecific sorption of anions on the zeolite surface. As a consequence, the redox and DeNO x properties of Cu-ZSM-5 depend considerably on the NH4OH/Cu2+ ratio in the solution used in ion exchange. The aqueous ammonia solutions of the copper salts with NH4OH/Cu2+ = 6–10 stabilize, in the Cu-ZSM-5 structure, Cu2+ ions bonded with extraframework oxygen, which are more active in DeNO x than isolated Cu2+ ions (which form at NH4OH/Cu2+ = 30) or nanosized CuO particles (which form at NH4OH/Cu2+ = 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iwamoto, M., Furukawa, H., and Kagawa, S., Stud. Surf. Sci. Catal., 1986, vol. 28, p. 943.

    Article  CAS  Google Scholar 

  2. Iwamoto, M., Yahiro, H., Mine, Y., and Kagawa, S., Chem. Lett., 1989, no. 2, p. 213.

    Article  Google Scholar 

  3. Yashnik, S.A., Anufrienko, V.F., Sazonov, V.A., Ismagilov, Z.R., and Parmon, V.N., Kinet. Catal., 2012, vol. 53, no. 3, p. 363.

    Article  CAS  Google Scholar 

  4. Vennestrom, P.N.R., Janssens, T.V.W., Kustov, A., Grill, M., Puig-Molina, A., Lundegaard, L.F., Tiruvalam, R.R., Concepcion, P., and Corma, A., J. Catal., 2014, vol. 309, p. 477.

    Article  Google Scholar 

  5. Iwamoto, M. and Hamada, H., Catal. Today, 1991, vol. 10, p. 57.

    Article  CAS  Google Scholar 

  6. Yashnik, S.A. and Ismagilov, Z.R., Anufrienkov. F, Catal. Today, 2005, vol. 110, p. 310.

    Article  CAS  Google Scholar 

  7. Taran, O.P., Yashnik, S.A., Ayusheev, A.B., Piskun, A.S., Prihod’ko, R.V., Ismagilov, Z.R., Goncharuk, V.V., and Parmon, V.N., Appl. Catal., B, 2013, vol. 140-141, p. 506.

    Article  CAS  Google Scholar 

  8. Zhang, Y., Leo, K.M., Sarofim, A.F., Hu, Z., and Flytzani-Stephanopoulos, M., Catal. Lett., 1995, vol. 31, p. 75.

    Article  Google Scholar 

  9. Yashnik, S.A., Salnikov, A.V., Vasenin, N.T., Anufrienko, V.F., and Ismagilov, Z.R., Catal. Today, 2012, vol. 197, p. 214.

    Article  CAS  Google Scholar 

  10. Iwamoto, M., Yahiro, H., Torikai, Y., Yoshioka, T., and Mizuno, N., Chem. Lett., 1990, p. 1967.

    Google Scholar 

  11. Tsikoza, L.T., Matus, E.V., Ismagilov, Z.R., Sazonov, V.A., and Kuznetsov, V.V., Kinet. Catal., 2005, vol. 46, no. 4, p. 613.

    Article  CAS  Google Scholar 

  12. Baes, C.F. and Mesmer, R.E., The Hydrolysis of Cations, New York Wiley–Interscience, 1976.

    Google Scholar 

  13. Perrin, D.D., J. Chem. Soc., 1960, p. 3189.

    Google Scholar 

  14. Li, Y. and Hall, W.K., J. Phys. Chem., 1990, vol. 94, no. 16, p. 6145.

    Article  CAS  Google Scholar 

  15. Groothaert, M.H., van Bokhoven, J.A., Battiston, A.A., Weckhuysen, B.M., and Schoonheydt, R.A., J. Am. Chem. Soc., 2003, vol. 125, p. 7629.

    Article  CAS  Google Scholar 

  16. Shpiro, E.S., Grunert, W., Joyner, R.W., and Baeva, G.N., Catal. Lett., 1994, vol. 24, p. 159.

    Article  CAS  Google Scholar 

  17. Yashnik, S.A. and Ismagilov, Z.R., submitted for publication in Appl. Catal., B.

  18. Yashnik, S.A., Cand. Sci. (Chem.) Dissertation, Novosibirsk Inst. of Catalysis, 2004.

    Google Scholar 

  19. Nazarenko, V.A., Antonovich, V.P., and Nevskaya, E.M., Gidroliz ionov metallov v razbavlennykh rastvorakh (Hydrolysis of Metal Ions in Dilute Solutions), Moscow Atomizdat, 1979.

    Google Scholar 

  20. Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam Elsevier, 1968.

    Google Scholar 

  21. Krivoruchko, O.P., Larina, T.V., Shutilov, R.A., Gavrilov, V.Yu., Yashnik, S.A., Sazonov, V., Molina, I., and Ismagilov, Z.R., Appl. Catal., B, 2011, vol. 103, p. 1.

    Article  CAS  Google Scholar 

  22. Krivoruchko, O.P., Anufrienko, V.F., Paukshtis, E.A., Larina, T.V., Burgina, E.B., Yashnik, S.A., Ismagilov, Z.R., and Parmon, V.N., Dokl. Phys. Chem., 2004, vol. 398, no. 3, p. 226.

    Article  CAS  Google Scholar 

  23. Chajar, Z., Chanu, V.L., Primet, M., and Praliaud, H., Catal. Lett., 1998, vol. 52, p. 97.

    Article  CAS  Google Scholar 

  24. Sarkany, J., d’Itri, J.L., and Sachtler, W.M.H., Catal. Lett., 1992, vol. 16, p. 241.

    Article  CAS  Google Scholar 

  25. Lei, G.-D., Adelman, B.J., Sarkany, J., and Sachtler, W.M.H., Appl. Catal., B, 1995, no. 5, p. 245.

    Article  CAS  Google Scholar 

  26. Spoto, G., Zecchma, A., Bordiga, S., Ricchiardi, G., Martra, G., Leofantl, G., and Petrini, G., Appl. Catal., B, 1994, vol. 3, p. 151.

    Article  CAS  Google Scholar 

  27. Chajar, Z., Primet, M., Praliaund, H., Chevrier, M., Gauthier, C., and Mathis, F., Appl. Catal., B, 1994, no. 4, p. 199.

    Article  CAS  Google Scholar 

  28. Hadjiivanov, K. and Knözinger, H., Phys. Chem. Chem. Phys., 2001, vol. 3, p. 1132.

    Article  CAS  Google Scholar 

  29. Fu, Y., Tian, Y., and Lin, P., J. Catal., 1991, vol. 139, p. 85.

    Article  Google Scholar 

  30. Contariny, S. and Kevan, L.J., J. Phys. Chem., 1986, vol. 90, no. 8, p. 1630.

    Article  Google Scholar 

  31. Mikhailenko, S., Chajar, Z., and Primet, M., Appl. Catal., B, 1998, vol. 16, p. 359.

    Article  Google Scholar 

  32. Bera, P., Lopez, A., Camara, A., Hornes, A., and Martínez-Arias, A., J. Phys. Chem. C, 2009, vol. 113, p. 10689.

    Article  CAS  Google Scholar 

  33. Harrison, P.G., Ball, I.K., Azelee, W., Daniell, W., and Goldfarb, D., Chem. Mater., 2000, vol. 12, p. 3715.

    Article  CAS  Google Scholar 

  34. Kazansky, V.B., Borovkov, V.Yu., Serykh, A.I., van Santen, R.A., and Strobbelaar, P.J., Phys. Chem. Chem. Phys., 1999, vol. 1, p. 2881.

    Article  CAS  Google Scholar 

  35. Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize (IR Spectroscopy Applied to Heterogeneous Acid–Base Catalysis), Novosibirsk Nauka, 1992.

    Google Scholar 

  36. Giordanino, F., Vennestrom, P.N.R., Lundegaard, L.F., Stappen, F.N., Mossin, S., Beato, P., Bordiga, S., and Lamberti, C., Dalton Trans., 2013, vol. 42, p. 12741.

    Article  CAS  Google Scholar 

  37. Leofanti, G., Padovan, M., Garilli, M., Carmello, D., Zecchina, A., Spoto, G., Bordiga, S., Turnes Palomino, G., and Lamberti, C., J. Catal., 2000, vol. 189, p. 91.

    Article  CAS  Google Scholar 

  38. Tomisic, V. and Simeon, V., Phys. Chem. Chem. Phys., 1999, vol. 1, p. 299.

    Article  CAS  Google Scholar 

  39. Bulanek, R., Wichterlova, B., Sobalík, Z., and Tichy, J., Appl. Catal., B, 2001, vol. 31, p. 13.

    Article  CAS  Google Scholar 

  40. Dow, W.-P. and Huang, T.-J., Appl. Catal., A, 1996, vol. 141, p. 17.

    Article  CAS  Google Scholar 

  41. Vera, C.R., Pieck, C.L., Shimizu, K., Yori, J.C., and Parera, J.M., Appl. Catal., A, 2002, vol. 232, p. 169.

    Article  CAS  Google Scholar 

  42. Figueras, F., Coq, B., Ensuque, E., Tachon, D., and Delahay, G., Catal. Today, 1998, vol. 42, p. 117.

    Article  CAS  Google Scholar 

  43. Tkachenko, O.P., Klementiev, K.V., Berg, M.W.E., Koc, N., Bandyopadhyay, M., Birkner, A., Woll, C., Gies, H., and Grunert, W., J. Phys. Chem. B, 2005, vol. 109, p. 20979.

    Article  CAS  Google Scholar 

  44. Rodriguez, J.A., Kim, J.Y., Hanson, J.C., Perez, M., and Frenkel, A.I., Catal. Lett., 2003, vol. 85, p. 247.

    Article  CAS  Google Scholar 

  45. Grift, C.J.G., Mulder, A., and Geus, J.W., Appl. Catal., 1990, vol. 60, p. 181.

    Article  Google Scholar 

  46. Kefirov, R., Penkova, A., Hadjiivanov, K., Dzwigaj, S., and Che, M., Microporous Mesoporous Mater., 2008, vol. 116, p. 180.

    Article  CAS  Google Scholar 

  47. Wang, X., Hanson, J.C., Frenkel, A.I., Kim, J.-Y., and Rodriguez, J.A., J. Phys. Chem. B, 2004, vol. 108, p. 13667.

    Article  CAS  Google Scholar 

  48. Hornés, A., Bera, P., Lpópez-Cámara, A., Gamarra, D., Munuera, G., and Martínez-Arias, A., J. Catal., 2009, vol. 268, p. 367.

    Article  Google Scholar 

  49. Harrison, P.G., Ball, I.K., Azelee, W., Daniell, W., and Goldfarb, D., Chem. Mater., 2000, vol. 12, p. 3715.

    Article  CAS  Google Scholar 

  50. Ammendola, P., Barbato, P.S., Lisi, L., Ruoppolo, G., and Russo, G., Surf. Sci., 2011, vol. 605, p. 1812.

    Article  CAS  Google Scholar 

  51. Zhu, H., Qin, Z., Shan, W., Shen, W., and Wang, J., J. Catal., 2004, vol. 225, p. 267.

    Article  CAS  Google Scholar 

  52. Delahay, G., Coq, B., Ensuque, E., and Figueras, F., Langmuir, 1997, vol. 13, p. 5588.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Yashnik.

Additional information

Original Russian Text © S.A. Yashnik, Z.R. Ismagilov, 2016, published in Kinetika i Kataliz, 2016, Vol. 57, No. 6, pp. 777–799.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashnik, S.A., Ismagilov, Z.R. Zeolite ZSM-5 containing copper ions: The effect of the copper salt anion and NH4OH/Cu2+ ratio on the state of the copper ions and on the reactivity of the zeolite in DeNO x . Kinet Catal 57, 776–796 (2016). https://doi.org/10.1134/S0023158416060161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158416060161

Keywords

Navigation