Skip to main content
Log in

Industrial catalyst for the selective Fischer–Tropsch synthesis of long-chain hydrocarbons

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The results of development of an industrial supported cobalt–silica gel catalyst for the Fischer–Tropsch synthesis are reported. The studies included the selection of a support and the determination of an optimum active component content, a calcination temperature, and the effect of doping with aluminum oxide on the physicochemical and catalytic properties of the Co–SiO2 system. The catalyst samples were characterized by a set of physicochemical methods. The on-stream stability of the supported cobalt–silica gel catalyst was tested in the continuous mode for 1000 h. In the course of the entire test cycle, the catalyst exhibited stable operation under varied synthesis temperature and gas space velocity, and it can be recommended for industrial applications. The experimental results were used for the preparation of a pilot batch of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. David, A., Wood, A., and Chikezie, N., J. Nat. Gas Sci. Eng., 2012, vol. 9, p. 196.

    Article  Google Scholar 

  2. Khodakov, A.Y., Chu, W., and Fongarland, P., Chem. Rev., 2007, vol. 107, p. 1692.

    Article  CAS  Google Scholar 

  3. Bekker, M., Louw, N.R., Rensburg, J.V., and Potgiete, J., Int. J. Cosmet. Sci., 2013, vol. 35, p. 99.

    Article  CAS  Google Scholar 

  4. www.sasolwax.com/paraffin_wax.html. Accessed August 29, 2016.

  5. Mordkovich, V.Z., Sineva, L.V., Kul’chakovskaya, E.V., and Asalieva, E.Yu., Katal. Prom–sti., 2015, no. 5, p. 23.

    Google Scholar 

  6. Ellepola, J., Thijssen, N., Grievink, J., Baak, G., Avhale, A., and Schijndel, J.V., Comput. Chem. Eng., 2012, vol. 42, p. 2.

    Article  CAS  Google Scholar 

  7. Krylova, A.Yu. and Kozyukov, E.A., Solid Fuel Chem., 2007, vol. 41, no. 6, p. 335.

    Article  Google Scholar 

  8. Grigor'ev, D.A., Neft’, Gaz Biznes, 2011, no. 3, p. 51.

    Google Scholar 

  9. Savost'yanov, A.P., Narochnyi, G.B., Yakovenko, R.E., Bakun, V.G., and Zemlyakov, N.D., Catal. Ind., 2014, vol. 6, no. 4, p. 292.

    Article  Google Scholar 

  10. Yakovenko, R.E. and Narochnyi, G.B., Bakun V.G., Astakhov A.V., Izv. Vyssh. Uchebn. Zaved,. Severo-Kavkazskii Region, Tekh. Nauki, 2014, no. 6, p. 92.

    Google Scholar 

  11. Savost'yanov, A.P., Narochnyi, G.B., Yakovenko, R.E., Astakhov, A.V., Zemlyakov, N.D., Merkin, A.A., and Komarov, A.A., Catal. Ind., 2014, vol. 6, no. 3, p. 212.

    Article  Google Scholar 

  12. Narochnyi, G.B., Yakovenko, R.E., Savost’yanov, A.P., and Bakun, V.G., Catal. Ind., 2016, vol. 8, no. 2, p. 139.

    Article  Google Scholar 

  13. PDF-2, The Powder Diffraction File, International Center for Diffraction Data (ICCD), PDF-2 Release 2012. http://www.icdd.com.

  14. The Rietveld Method, Young, R.A., Ed., Oxford: Oxford Univ. Press, 1995.

  15. Satterfield, C., Heterogeneous Catalysis in Practice, New York: McGraw-Hill, 1980.

    Google Scholar 

  16. Boreskov, G.K., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Nauka, 1986.

    Google Scholar 

  17. Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Akademkniga, 2004.

    Google Scholar 

  18. Slivinskii, E.V., Kliger, G.A., Kuz’min, A.E., Abramova, A.V., and Kulikova, E.A., Ross. Khim. Zh., 2003, vol. 47, no. 6, p. 12.

    Google Scholar 

  19. Kibby, C., Catal. Today, 2013, vol. 215, p. 131.

    Article  CAS  Google Scholar 

  20. Sun, J., Catal. Sci. Technol., 2014, vol. 4, p. 1260.

    Article  CAS  Google Scholar 

  21. Yao, M., Catal. Sci. Technol., 2015, vol. 5, p. 2821.

    Article  CAS  Google Scholar 

  22. Girardon, J.S., J. Catal., 2005, vol. 230, p. 339.

    Article  CAS  Google Scholar 

  23. Chernavskii, P.A., Chu, Vei., Khodakov, A.Yu., Pankina, G.V., and Peskov, N.V., Russ. J. Phys. Chem. A, 2008, vol. 82, no. 6, p. 951.

    Article  CAS  Google Scholar 

  24. Dzis'ko, V.A., Karnaukhov, A.P., and Tarasova, D.V., Fiziko-khimicheskie osnovy sinteza okisnykh katalizatorov (Physicochemical Foundations of the Synthesis of Oxide Catalysts), Novosibirsk: Nauka, 1978.

    Google Scholar 

  25. Kheifets, L.I. and Neimark, A.V., Mnogofaznye protsessy v poristykh sredakh (Multiphase Processes in Porous Media), Moscow: Khimiya, 1982.

    Google Scholar 

  26. Chu, W., Xu, J., Hong, J., Lin, T., and Khodakov, A., Catal. Today, 2015, vol. 256, p. 41.

    Article  CAS  Google Scholar 

  27. Guo, P., Saw, W., Eyk, P., Ashman, P., Nathan, G., and Stechel, E., Energy Procedia, 2015, vol. 69, p. 1770.

    Article  CAS  Google Scholar 

  28. Prieto, G., Concepción, P., Murciano, R., and Martínez, A., J. Catal., 2013, vol. 302, p. 37.

    Article  CAS  Google Scholar 

  29. Tsubaki, N., Sun, S., and Fujimoto, K., J. Catal., 2001, vol. 199, p. 236.

    Article  CAS  Google Scholar 

  30. Chu, W., Chernavskii, P.A., Gengembre, L., Pankina, G.A., Fongarland, P., and Khodakov, A.Y., J. Catal., 2007, vol. 252, p. 215.

    Article  CAS  Google Scholar 

  31. Girardon, J.-S., Quinet, E., Griboval-Constant, A., Chernavskii, P.A., Gengembre, L., and Khodakov, A.Y., J. Catal., 2007, vol. 248, p. 143.

    Article  CAS  Google Scholar 

  32. Beer, M., Kunene, A., Nabaho, D., Claeys, M., and Steen, E., J. South Afr. Inst. Min. Metall., 2014, vol. 114, no. 2, p. 157.

    Google Scholar 

  33. París, L., Lopez, J., Barrientos, F., and Pardo, M., in Catalysis, vol. 27, Spivey, J.J., Han, Y.-F., and Dooley, K.M., Eds., Cambridge: R. Soc. Chem., 2015, ch. 3, p. 62.

  34. Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., and Gu, S., Catal. Sci. Technol., 2014, vol. 4, p. 2210.

    Article  CAS  Google Scholar 

  35. Johnson, G.R. and Bell, A.T., ACS Catal., 2016, vol. 6, p. 100.

    Article  CAS  Google Scholar 

  36. Zhang, Y., Nagamori, S., Hinchiranan, S., Vitidsant, T., and Tsubaki, N., Energy Fuels, 2006, vol. 20, p. 417.

    Article  CAS  Google Scholar 

  37. Pei, Y., Ding, Y., Zhu, H., Zang, J., Song, X., Dongm, W., Wang, T., and Lu, Y., Catal. Lett., 2014, vol. 144, p. 1433.

    Article  CAS  Google Scholar 

  38. Peng, X., Cheng, K., Kang, J., Gu, B., Yu, X., Zhang, Q., and Wang, Y., Angew. Chem., 2015, vol. 127, p. 4636.

    Article  Google Scholar 

  39. Sedran, U.A. and Figoli, N.S., Appl. Catal., 1985, vol.19, p. 317.

    Article  CAS  Google Scholar 

  40. Kruse, N., Machoke, A.G., Schwieger, W., and Guttel, R., ChemCatChem, 2015, vol. 7, p. 1018.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Narochnyi.

Additional information

Original Russian Text © A.P. Savost’yanov, R.E. Yakovenko, G.B. Narochnyi, V.G. Bakun, S.I. Sulima, E.S. Yakuba, S.A. Mitchenko, 2017, published in Kinetika i Kataliz, 2017, Vol. 58, No. 1, pp. 86–97.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B. et al. Industrial catalyst for the selective Fischer–Tropsch synthesis of long-chain hydrocarbons. Kinet Catal 58, 81–91 (2017). https://doi.org/10.1134/S0023158417010062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158417010062

Keywords

Navigation