Skip to main content
Log in

Cyanobacterial phycobilisomes and phycobiliproteins

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

In cyanobacteria, phycobilisomes (PBS) act as antenna of the photosynthetic pigment apparatus. They contain brightly colored phycobiliproteins (PBP) and form giant supramolecular complexes (up to 3000–7000 kDa) containing 200 to 500 phycobilin chromophores covalently bound to the proteins. There are over ten various PBP known, which falls into one of three groups: phycoerythrins, phycocyanins, and allophycocyanins. Hollow disks of PBP trimers and hexamers are arranged into cylinders by colorless linker proteins; the cylinders are then assembled into PBS. Typical semidiscoidal PBS consists of a central core formed by three allophycocyanin cylinders and of six lateral cylinders consisting of other PBP and attached as a fan to the nucleus. The PBS number, size, and pigment composition in cyanobacteria depend on light conditions and other ambient factors. While PBSs have certain advantages compared to other antennae, these pigment-protein complexes require more energy for their biosynthesis than the chlorophyll a/b and chlorophyll a/c proteins of oxygenic photosynthetic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Esenbeck, N., Über einen blau-rothen Farbstoff, der sich bei der Zersetzung von Oscillatorien bildet, Liebigs Ann. Chem., 1836, vol. 17, pp. 75–82.

    Google Scholar 

  2. Ikeuchi, M. and Ishizuka, T., Cyanobacteriochromes: a new family of tetrapyrrole-binding photoreceptors in cyanobacteria, Photochem. Photobiol. Sci., 2008, vol. 7, pp. 187–292.

    Google Scholar 

  3. Bykhovskii, V.Ya. and Zaitseva, N.I., Microbiological synthesis of tetrapyrrole compounds, Itogi Nauki i Tekhniki. Ser. Biol. Khim., Moscow: VINITI, 1989, vol. 32.

    Google Scholar 

  4. Glazer, A.N., Light guides. Directional energy transfer in a photosynthetic antenna, J. Biol. Chem., 1989, vol. 264, pp. 1–4.

    CAS  PubMed  Google Scholar 

  5. Scheer, H. and Zhao, K.-H., Biliprotein maturation: the chromophore attachment, Mol. Microbiol., 2008, vol. 68, pp. 263–276.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Beale, S.I., Enzymes of chlorophyll biosynthesis, Photosynth. Res., 1999, vol. 60, pp. 43–73.

    Article  CAS  Google Scholar 

  7. Stadnichuk, I.N. and Tropin, I.V., Antenna replacement in the evolutionary origin of chloroplasts, Microbiology (Moscow), 2014, vol. 83, pp. 299–314.

    Article  CAS  Google Scholar 

  8. Frankenberg, N. and Lagarias, J.C., Biosynthesis and biological functions of bilins, in The Porphyrin Handbook, Kadish, K.M., Smith, K.M., and Guillard, R., Eds., Amsterdam: Academic, 2003, pp. 211–236.

    Chapter  Google Scholar 

  9. Stadnichuk, I.N., Phycobiliproteins, Itogi Nauki i Tekhniki. Ser. Biol. Khim., Moscow: VINITI, 1990, vol. 40.

  10. Apt, K.E., Collier, J.L., and Grossman, A.R., Evolution of the phycobiliproteins, J. Mol. Evol., 1995, vol. 248, pp. 79–96.

    CAS  Google Scholar 

  11. Zhao, F. and Qin, S., Evolutionary analysis of phycobiliproteins: implications for their structural and functional relationships, J. Mol. Evol., 2006, vol. 63, pp. 330–340.

    Article  CAS  PubMed  Google Scholar 

  12. Betz, M., One century of protein crystallography: the phycobiliproteins, Biol. Chem., 1997, vol. 378, pp. 167–176.

    CAS  PubMed  Google Scholar 

  13. Adir, N., Elucidation of the molecular structures of components of phycobilisome: reconstructing a giant, Photosynth. Res., 2005, vol. 85, pp. 15–32.

    Article  CAS  PubMed  Google Scholar 

  14. Watanabe, M. and Ikeuchi, M., Phycobilisome: architecture of a light-harvesting supercomplex, Photosynth. Res., 2013, vol. 116, pp. 265–276.

    Article  CAS  PubMed  Google Scholar 

  15. Gannt, E. and Conti, S.F., Phycobiliprotein localization in algae, Brookhaven Symp. Biol., 1966, vol. 19, pp. 393–405.

    Google Scholar 

  16. Koller, K.-P., Wehrmeyer, W., and Mörschel, E., Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea, Eur. J. Biochem., 1978, vol. 91, pp. 57–63.

    Article  CAS  PubMed  Google Scholar 

  17. Tandeau de Marsac, N. and Cohen-Bazire, N., Molecular composition of cyanobacterial phycobilisomes, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, pp. 1635–1639.

    Article  Google Scholar 

  18. Liu, L.-N., Chen, X.-L., Zhang, Y.-Z., and Zhou, B.-C., Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview, Biochim. Biophys. Acta., 2005, vol. 1708, pp. 133–142.

    Article  CAS  PubMed  Google Scholar 

  19. Stadnichuk, I.N., Phycobilisomes, Itogi Nauki i Tekhniki. Ser. Biol. Khim., Moscow: VINITI, 1991, vol. 46.

  20. Pizarro, S.A. and Sauer, K., Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptide, Photochem. Photobiol., 2001, vol. 73, pp. 556–563.

    Article  CAS  PubMed  Google Scholar 

  21. MacColl, R., Allophycocyanin and energy transfer, Biochim. Biophys. Acta, 2004, vol. 1657, pp. 73–81.

    Article  CAS  PubMed  Google Scholar 

  22. Engelmann, T.W., Über Sauerstoffausscheidung von Pflanzenzellen im Microspectrum, Bot. Z., 1882, vol. 40, pp. 419–425.

    Google Scholar 

  23. Rakhimberdieva, M.G. Boichenko, V.A., Karapetyan, N.V., and Stadnichuk, I.N., Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis, Biochemistry, 2001, vol. 40, pp. 15780–15788.

    Article  CAS  PubMed  Google Scholar 

  24. Grossman, A.R., van Waasbergen, L.G., and Kehoe, D., Environmental regulation of phycobilisome biosynthesis, in Light Harvesting Antennas in Photosynthesis, Green, B. and Parson, W., Eds., Dordrecht: Kluwer. 2003, pp. 471–493.

    Chapter  Google Scholar 

  25. Everroad, C., Six, C., Partensky, F., Thomas, J.-C., Holtzendorff, J., and Wood, A.M., Biochemical bases of type IV chromatic adaptation in marine Synechococcus sp., J. Bacteriol., 2006, vol. 188, pp. 3345–3356.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Stowe-Evans, E.L. and Kehoe, D.M., Signal transduction during light-quality acclimation in cyanobacteria: a model system for understanding phytochromeresponse pathways in prokaryotes, Photochem. Photobiol. Sci., 2004, vol. 3, pp. 495–502.

    Article  CAS  PubMed  Google Scholar 

  27. Murata, N., Control of excitation transfer in photosynthesis, Biochim. Biophys. Acta, 1969, vol. 172, pp. 242–251.

    Article  CAS  PubMed  Google Scholar 

  28. Stadnichuk, I.N., Lukashev, E.P., and Elanskaya, I.V., Fluorescence changes accompanying short-term light adaptations in photosystem I and photosystem II of the cyanobacterium Synechocystis sp. PCC 6803 and phycobiliprotein-impaired mutants: State1/State2 transitions and carotenoid-induced quenching of phycobilisomes, Photosynth. Res., 2009, vol. 99, pp. 227–241.

    Article  CAS  PubMed  Google Scholar 

  29. Rakhimberdieva, M.G., Stadnichuk, I.N., Elanskaya, I.V., and Karapetyan, N.V., Carotenoidinduced quenching of the phycobilisome fluorescence in photosysten II-deficient mutant of Synechocystis sp. PCC 6803, FEBS Lett., 2004, vol. 574, pp. 85–88.

    Article  CAS  PubMed  Google Scholar 

  30. Kirilovsky, D. and Kerfeld, C.A., The orange carotenoid protein: a blue-green light photoactive protein, Photochem. Photobiol. Sci., 2013, vol. 12, pp. 1135–1143.

    Article  CAS  PubMed  Google Scholar 

  31. Keeling, P.J., The number, speed, and impact of plastid endosymbioses in eukaryotic evolution, Annu. Rev. Plant Biol., 2013, vol. 64, pp. 583–607.

    Article  CAS  PubMed  Google Scholar 

  32. Ajlani, G. and Vernotte, C., Construction and characterization of phycobiliprotein-less mutant of Synechocystis sp. PCC 6803, Plant Mol. Biol., 1998, vol. 37, pp. 577–580.

    Article  CAS  PubMed  Google Scholar 

  33. Severtsov, A.N., Morphological Regularity of Evolution, in Complete works, 1949, vol. 5, Moscow-Leningrad.

  34. MacColl, R. and Guard-Friar, D., Phycobiliproteins, 1987, Boca Raton: CRC.

    Google Scholar 

  35. Eriksen, N.T., Production of phycocoyanin—a pigment with applications in biology, biotechnology, foods and medicine, Appl. Microbiol. Biotechnol., 2008, vol. 80, pp. 1–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Stadnichuk.

Additional information

Original Russian Text © I.N. Stadnichuk, P.M. Krasilnikov, D.V. Zlenko, 2015, published in Mikrobiologiya, 2015, Vol. 84, No. 2, pp. 131–143.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadnichuk, I.N., Krasilnikov, P.M. & Zlenko, D.V. Cyanobacterial phycobilisomes and phycobiliproteins. Microbiology 84, 101–111 (2015). https://doi.org/10.1134/S0026261715020150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261715020150

Keywords

Navigation