Skip to main content
Log in

Nucleotide composition and CpG and CpNpG content of ITS1, ITS2, and the 5.8S rRNA in representatives of the phylogenetic branches melanthiales-liliales and melanthiales-asparagales (Angiospermae, Monocotyledones) reflect the specifics of their evolution

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The nucleotide composition and the contents of CpG and CpNpG in internal transcribed spacers 1 and 2 (ITS1 and ITS2) and the 5.8S rRNA gene of the nuclear genome were studied in two phylogenetic lineages of monocotyledonous angiosperms. The evolutionary advance of taxa by morphological characters proved to positively correlate with an increase in the contents of C, CpG, and CpNpG, contrasting the views that genome evolution in vertebrate and higher plants tends to decrease or, at least, preserve the amount of CpG and CpNpG, potentially subject to methylation, in nuclear DNA. Cryptaffinity taxa, which are intermediates between morphologically distinct taxonomic groups, displayed higher contents of CpG and CpNpG as compared with neighboring taxa. Changes in the contents of these elements in the regions of cryptaffinity taxa are intricate, suggesting a reciprocating character for their accumulation. Cryptaffinity taxa and their close phylogenetic relatives from the ancestral and descendant groups were assumed to reflect the key macroevolutionary changes and to correspond to saltatory periods separating the periods of gradual evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chupov V.S. 2001. On probable functional differentiation of genomes during phylogeny and approaches to its study: 1. Neontological annals of evolution and their analysis. Tsitologiya. 43, 975–986.

    CAS  Google Scholar 

  2. Chupov V.S. 2002. On the course of development of phylogenetic side branch. Tsitologiya. 44, 323–333.

    CAS  Google Scholar 

  3. Chupov V.S. 2001. On probable functional differentiation of genomes during phylogeny and approaches to its study: 2. Possible approaches to elucidating the material basis of inequality of phylogenetic lineages. Tsitologiya, 43, 987–991.

    CAS  Google Scholar 

  4. Chupov V.S., Punina E.O., Machs E.M., Rodionov A.V. 2003. Saturation of ribosome cluster components with CpG elements. Materialy s”ezda VGO im. N.I. Vavilova (Proc. Conf. Vavilov All-Russia Geneic Society). 2, 223–224.

    Google Scholar 

  5. Chupov V.S., Punina E.O., Machs E.M., Rodionov A.V. 2003. CpG and CpNpG elements of ribosome cluster in monocotyledon taxa differing in the level of evolutionary development. In: Botanicheskie issledovaniya v Aziatskoi Rossii (Botanical Studies in Asian Russia), vol. 2.

  6. Chupov V.S., Punina E.O., Machs E.M., Rodionov A.V. 2004. Specificity of the mutation process in taxa of the transitional zone between families Melanthiaceae and Trilliaceae. In: Genetika in XXI veke: sovremennoe sostoyanie i perspektivy razvitiya (Genetics in the 20st Century: Current State and Prospects), Moscow: Nauka, vol. 2.

    Google Scholar 

  7. Sumner A.T. 1990. Chromosome Banding. London: Nyman.

    Google Scholar 

  8. Singer M., Berg P. 1991. Genes and Genomes. Mill Valley, CA: University Science Books, 1991.

    Google Scholar 

  9. Chupov V.S. 2002. Form of phylogenetic side branch in plants according to data on neontological-taxonomic annals of evolution. Usp. Sovrem. Biol. 122, 227–238.

    Google Scholar 

  10. Chargaff E. 1950. Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia. 6, 201–209.

    Article  PubMed  Google Scholar 

  11. Chargaff E. 1951. Structure and function of nucleic acids as cell constituents. Federat. Proc. 10, 654–659.

    CAS  Google Scholar 

  12. Belizersky A.N., Antonov A.S., Mednikov B.M. 1972. Introduction, In: Stroenie DNK i polozhenie organizmov v sisteme (DNA Structure and Positions of Organisms in the System). Eds. Belozersky A.N., Antonov A.S. Moscow: Mosk. Gos. Univ., pp. 3–16.

    Google Scholar 

  13. Bird A. 1980. DNA methylation and frequency of CpG in animal DNA. Nucleic Acids Res. 8, 1499–1504.

    Article  PubMed  CAS  Google Scholar 

  14. Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21.

    Article  PubMed  CAS  Google Scholar 

  15. Mazin A.L., Vanyushin B.F. 1987a. Loss of CpG dinucleotides from DNA: 1. Methylated and nonmethylated genome compartments in eukaryotes with different 5-methylcytosine in DNA. Mol. Biol. 21, 543–551.

    CAS  Google Scholar 

  16. Finnegan E., Kovac K. 2000. Cytosine deamination plays a primary role in the evolution of mammalian isochors. Plant. Mol. Evol. 43, 189–201.

    CAS  Google Scholar 

  17. Mazin A.L., Vanyushin B.F. 1987b. Loss of CpG dinucleotides from DNA: 2. Methylated and nonmethylated genes of vertebrates. Mol. Biol. 21, 552–561.

    CAS  Google Scholar 

  18. Boudraa M., Perrin P. 1987. CpG and TpA frequencies in the plant system. Nucleic Acids Res. 15, 5729–5737.

    Article  PubMed  CAS  Google Scholar 

  19. Rodionov V.A., Tyupa N.B., Kim E.S., Machs E.N., Loskutov I.G. 2005. Genomic constitution of autotetraploid oat, Avena macrostahia, revealed by comparative analysis of ITS1 e ITS2 sequences: On evolution of cultivated and wild oat caryotypes at early stages of Avena species divergence. Genetika. 41, 1–9.

    CAS  Google Scholar 

  20. Melchior H. 1964. Engler’s Syllabus der Pflanzenfamilien. Berlin-Nikolassee: Borntrager, vol., issue 12.

    Google Scholar 

  21. Hutchinson J. 1973. The Families of Flowering Plants, 3rd ed. Oxford: Clarendon.

    Google Scholar 

  22. Thorne R. 1992. Classification and geography of the flowering plants. Bot. Rev. 58, 1–348.

    Article  Google Scholar 

  23. Chupov V.S. 1994. Phylogeny and system of orders Liliales and Asparagales. Bot. J. 79, 1–12.

    Google Scholar 

  24. Takhtajan A. 1996. Diversity and Classification of Flowering Plants. N.Y.: Columbia University Press.

    Google Scholar 

  25. APG. 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Garden. 85, 531–553.

    Article  Google Scholar 

  26. APG. 2003. The angiosperm phylogeny group classification for the orders and families of flowering plants APG II. Bot. J. Linn. Soc. 141, 399–436.

    Article  Google Scholar 

  27. Chase M.W., Soltis D., Soltis P., Rudall P., Fay M., Hahn W., Sullivan S., Jeffrey J., Molvray M., Kores P., Pires C., Olmstead R.G., Morgan D., Les D.H., Mischler B.D., Duvall M.R., Price R.A. 2000. Higher-level systematics of the monocotyledons. In: Monocots: Sysematics and Evolution. Eds. Wilson K., Morrison D. Melbourne: CSIRO.

    Google Scholar 

  28. Zomlefer B., Whitten M., Williams H., Judd W. 2003. An overview of Veratrum s. l. and an infrageneric phylogeny based on ITS sequence data. Syst. Bot. 28, 250–269.

    Google Scholar 

  29. Chupov V.S., Kudryakova N.V. 1996. Electrophoretic mobility of esterases from seeds of Liliaceae plants as an index characterizing the level of their evolutionary development. Bot. Zh. 81, 47–54.

    Google Scholar 

  30. Patrushev L.I. 2000. Ekspressiya genov (Gene Expression). Moscow: Nauka.

    Google Scholar 

  31. Gromova E.S., Khoroshaev A.E. 2003. Prokaryotic DNA methyltransferases: Structure and mechanism of interaction with DNA. Mol. Biol. 37, 300–314.

    Article  CAS  Google Scholar 

  32. King K., Torres R., Zentgraf U. Hemleben V. 1993. Molecular evolution of the intergenic spacer in the nuclear ribosomal RNA genes of Cucurbitaceae. J. Mol. Evol. 36, 144–152.

    Article  PubMed  CAS  Google Scholar 

  33. Matsuo K., Clay O., Takahashi T., Silke J., Schaffner W. 1993. Evidence for erosion of mouse CpG islands during mammalian evolution. Somat. Cell Mol. Genet. 19, 543–555.

    Article  PubMed  CAS  Google Scholar 

  34. Moor G., Abbo S., Cheung W., Foote T., Gale M., Koebner R., Leitch A., Leitch I. 1993. Key features of cereal genome organization as revealed by the use of cytosine methylation-sensitive restriction endonucleases. Genomics. 15, 472–482.

    Article  Google Scholar 

  35. Jansson S., Meyer-Gauen G., Cerff R., Martin W. 1994. Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes. J. Mol. Evol. 39, 34–46.

    Article  PubMed  Google Scholar 

  36. Clay O., Schaffner W. Matsuo K. 1995. Periodicity of eight nucleotides in purine distribution around human genomic CpG dinucleotides. Somat. Cell. Mol. Genet. 21, 91–98.

    Article  PubMed  CAS  Google Scholar 

  37. Berkhout B., Grigoriev A., Bakker M., Lukashov V.V. 2002. Codon and amino acid usage in retroviral genomes is consistent with virus-specific nucleotide genomes. AIDS Res. Hum. Retrovir. 18, 133–141.

    Article  PubMed  CAS  Google Scholar 

  38. Tajama S., Suetake I. 1998. Regulation and function of DNA methylation in vertebrats. J. Biochem. (Tokyo). 123, 993–999.

    Google Scholar 

  39. Bird A. 1987. CpG islands as gene markers in the vertebrate nucleus. Trends Genet. 3, 342–347.

    Article  CAS  Google Scholar 

  40. Gardiner-Garden M., Frommer M. 1987. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282.

    Article  PubMed  CAS  Google Scholar 

  41. Gardiner-Garden M., Sved M., Frommer M. 1992. Methylation sites in angiosperm genes. J. Mol. Evol. 34, 219–230.

    Article  CAS  Google Scholar 

  42. Kawasaki K., Minoshima S., Kudoh J., Shimizu N. 1992. Methylation status of ribosomal RNA gene clusters in the flow-sorted human acrocentric chromosomes. Mamm. Genome. 3, 173–178.

    Article  PubMed  CAS  Google Scholar 

  43. Sardana R., O’Dell M., Flavell R. 1993. Correlation between the size of the intergenic regulatory region, the status of cytosine methylation of rRNA genes and nucleolar expression in wheat. Mol. Gen. Genet. 236, 155–162.

    Article  PubMed  CAS  Google Scholar 

  44. Torres-Ruiz R., Hemleben V. 1994. Pattern and degree of methylation in ribosomal RNA genes of Cucurbita pepo L. Plant Mol. Biol. 26, 1167–1179.

    Article  PubMed  CAS  Google Scholar 

  45. Hendrich B., Tweedie S. 2003. The methyl-CpG-binding domain and the evolving role of DNA methylation in animals. Trends Genet. 19, 269–277.

    Article  PubMed  CAS  Google Scholar 

  46. Kovarik A., Matyasek R., Leitch A., Gazdova B., Fulnecek J., Bezdek M. 1997. Variability in CpNpG methylation in higher plant genomes. Gene. 204, 25–33.

    Article  PubMed  CAS  Google Scholar 

  47. Cardon L., Burge C., Claiton D., Karlin S. 1994. Pervasive CpG suppression in animal mitochondrial genomes. Proc. Natl. Acad. Sci. USA. 91, 3799–3803.

    Article  PubMed  CAS  Google Scholar 

  48. Buckler E. IV, Holtsford T. Zea ribosomal repeat evolution and substitution patterns. Mol. Biol. Evol. 13, 623–632.

  49. Mazin A.L. 1995. Factor IX gene methylation is the main cause of mutations resulting in hemophilia B. Mol. Biol. 29, 71–89.

    CAS  Google Scholar 

  50. Chupov V.S., Machs E.M. 2006. Variation in nucleotide composition of the region ITS1-5.8S rRNA-ITS2 in evolutionary advanced and evolutionary static branches of the monocotyledonous plants. Proc. 5th Int. Conf. Bioinformatics of Genome Regulation and Structure. Novosibirsk, Russia, July 16–22, 2006. Novosibirsk, vol. 3 pp. 133–137.

    Google Scholar 

  51. Karlin S., Mrasek J. 1997. Compositional differences within and between eukaryotic genomes. Proc. Natl. Acad. Sci. USA. 94, 10,227–10,232.

    CAS  Google Scholar 

  52. Krutyakov V.M. 2006. Eukaryotic error-prone DNA polymerases: Presumed roles in replication, repair, and mutagenesis. Mol. Biol. 40, 3–11.

    Article  CAS  Google Scholar 

  53. Zomlefer W., Williams N., Whitten M., Judd W. 2001. Generic circumscription and relationships tribe Melanthieae (Liliales, Melanthiaceae) with emphasis on Zigadenus: Evidence from ITS and trnL sequence data. Am. J. Bot. 88, 1657–1669.

    Article  CAS  Google Scholar 

  54. Fuse F., Tamura M.A. 2000. Phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biol. 2, 415–427.

    Article  CAS  Google Scholar 

  55. Chupov V.S. 1990. Notes on phylogenetic relationships of some groups of monocotyledons. Bot. Zh., 75, 1092–1102.

    Google Scholar 

  56. Rydberg P. 1903. Some generic segregations. Torr. Bot. Club. 30, 271–281.

    Article  Google Scholar 

  57. Bogler D., Neff J., Simpson B. 1995. Multiple origins of the yucca-yucca moth association. Proc. Natl. Acad. Sci. USA. 92, 6864–6867.

    Article  PubMed  CAS  Google Scholar 

  58. Fay M., Chase M. 1996. Resurrection of Themidaceae for the Brodiaeae alliance and recircumscription of Alliaceae, Amaryllidaceae and Agapanthoideae. Proc. Natl. Acad. Sci. USA. 45, 441–451.

    Google Scholar 

  59. Pfosser M., Speta F. 1999. Phylogenetics of Hyacinthaceae based on plastid DNA sequences. Ann. Missouri Bot. Gard. 86, 852–875.

    Article  Google Scholar 

  60. Tkhtajan A.L. 1964. Osnovy evolyutsionnoi morfologii pokrytosemyannykh (Fundamentals of Evolutionary Morphology of Angiosperms). Moscow: Nauka.

    Google Scholar 

  61. Takhtajan A.L. 1996. Sistema i fologeniya tsvetkovykh rastenii (The System and Phylogeny of Flowering Plants). Moscow: Nauka.

    Google Scholar 

  62. Cronquist A. 1981. An Integrated System of Classification of Flowering Plants. N.Y.: Columbia Univ. Press.

    Google Scholar 

  63. Mazin A.L. 1993. Genome loses the whole amount of 5-methylcytosine during lifetime: How it is related to accumulation of mutations during aging. Mol. Biol. 27, 160–173.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Chupov.

Additional information

Original Russian Text © V.S. Chupov, E.O. Punina, E.M. Machs, A.V. Rodionov, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 5, pp. 808–829.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chupov, V.S., Punina, E.O., Machs, E.M. et al. Nucleotide composition and CpG and CpNpG content of ITS1, ITS2, and the 5.8S rRNA in representatives of the phylogenetic branches melanthiales-liliales and melanthiales-asparagales (Angiospermae, Monocotyledones) reflect the specifics of their evolution. Mol Biol 41, 737–755 (2007). https://doi.org/10.1134/S002689330705007X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689330705007X

Key words

Navigation