Skip to main content
Log in

Genomic analysis of silkworm microRNA promoters and clusters

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are endogenous single-stranded RNAs of 18–22 nt in length, which can regulate the complementary mRNAs at the post-transcriptional level by cleavage or repression of translation of the target mRNAs. Studies have shown that the majority of animal miRNAs are transcribed from independent transcription units, and some are transcribed together with their host genes. However, the nature of the primary transcript of intergenic miRNAs remains unknown. Silkworm (Bombyx mori) miRNAs are representative of those of the Lepidoptera insects and many of them are conserved in Caenorhabditis elegans and other animal species. To date, little is known about the transcriptional regulation of silkworm miRNA genes. We performed the genomic analysis on the silkworm miRNA transcripts around the promoter region including the transcription start site (TSS) and the TATA-box, and on the organization of the miRNA cluster. In 73 pre-miRNAs from the silkworm 131 promoters were detected via a bioinformatics approach. Among them the portion of non-conserved promoters is greater than that of the conserved ones. The genomic organization of pre-miRNAs of the silkworm was globally analyzed and it was determined that 11 of them were organized into five clusters. Sequence alignment showed that paralogs existed for some of the miRNAs in the cluster. These results may increase the understanding of the specific sequences upstream of the pre-miRNAs and of the functional implications of miRNA clusters in the silkworm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aravin A.A., Lagos-Quintana M., Yalcin A., Zavolan M., Marks D., Snyder B., Gaasterland T., Meyer J., Tuschl T. 2003. The small RNA profile during Drosophila melanogaster development. Dev. Cell. 5, 337–350.

    Article  PubMed  CAS  Google Scholar 

  2. Bentwich I., Avniel A., Karov Y., Aharonov R., Gilad S., Barad O., Barzilai A., Einat P., Einav U., Meiri E., Sharon E., Spector Y., Bentwich Z. 2005. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genet. 37, 766–770.

    Article  PubMed  CAS  Google Scholar 

  3. Wang X.J., Reyes J.L., Chua N.H., Gaasterland T. 2004. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 5, R65.

    Article  PubMed  Google Scholar 

  4. Zhang B., Wang Q., Pan X. 2007. MicroRNAs and their regulatory roles in animals and plants. J. Cell. Physiol. 210, 279–289.

    Article  PubMed  CAS  Google Scholar 

  5. Lee Y., Jeon K., Lee J.T., Kim S., Kim V.N. 2002. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO. J. 21, 4663–4670.

    Article  PubMed  CAS  Google Scholar 

  6. Tang G. 2005. siRNA and miRNA: An insight into RISCs. Trends Biochem. Sci. 30, 106–114.

    Article  PubMed  CAS  Google Scholar 

  7. Lee R.C., Ambros V. 2001. An extensive class of small RNAs in Caenorhabditis elegans. Science. 294, 862–864.

    Article  PubMed  CAS  Google Scholar 

  8. Qiu C.X., Xie F.L., Zhu Y.Y., Guo K., Huang S.Q., Nie L., Yang Z.M. 2007. Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene. 395, 49–61.

    Article  PubMed  CAS  Google Scholar 

  9. Xie F.L., Huang S.Q., Guo K., Xiang A.L., Zhu Y.Y., Nie L., Yang Z.M. 2007. Computational identification of novel microRNAs and targets in Brassica napus. FEBS. Lett. 581, 1464–1474.

    Article  PubMed  CAS  Google Scholar 

  10. Borchert G.M., Lanier W., Davidson B.L. 2006. RNA polymerase III transcribes human microRNAs. Nature Struct. Mol. Biol. 13, 1097–1101.

    Article  CAS  Google Scholar 

  11. Rodriguez A., Griffiths-Jones S., Ashurst J.L., Bradley A. 2004. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910.

    Article  PubMed  CAS  Google Scholar 

  12. Jones-Rhoades M.W., Bartel D.P. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell. 14, 787–799.

    Article  PubMed  CAS  Google Scholar 

  13. Saini H.K., Griffiths-Jones S., Enright A.J. 2007. Genomic analysis of human microRNA transcripts. Proc. Natl. Acad. Sci. U.S.A. 104, 17719–17724.

    Article  PubMed  CAS  Google Scholar 

  14. Lee Y., Kim M., Han J., Yeom K.H., Lee S., Baek S.H., Kim V.N. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060.

    Article  PubMed  CAS  Google Scholar 

  15. Smale S.T. 2001. Core promoters: Active contributors to combinatorial gene regulation. Genes. Dev. 15, 2503–2508.

    Article  PubMed  CAS  Google Scholar 

  16. Xie Z., Allen E., Fahlgren N., Calamar A., Givan S.A., Carrington J.C. 2005. Expression of Arabidopsis miRNA genes. Plant. Physiol. 138, 2145–2154.

    Article  PubMed  CAS  Google Scholar 

  17. Chen K., Rajewsky N. 2007. The evolution of gene regulation by transcription factors and microRNAs. Nature Rev. Genet. 8, 93–103.

    Article  PubMed  CAS  Google Scholar 

  18. Megraw M., Baev V., Rusinov V., Jensen S.T., Kalantidis K., Hatzigeorgiou A.G. 2006. MicroRNA promoter element discovery in Arabidopsis. RNA. 12, 1612–1619.

    Article  PubMed  CAS  Google Scholar 

  19. Zhou X., Ruan J., Wang G., Zhang W. 2007. Characterization and identification of microRNA core promoters in four model species. PLoS Comput. Biol. 3, e37.

    Article  PubMed  Google Scholar 

  20. Smale S.T., Kadonaga J.T. 2003. The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479.

    Article  PubMed  CAS  Google Scholar 

  21. Weis L., Reinberg D. 1992. Transcription by RNA polymerase II: Initiator-directed formation of transcription-competent complexes. FASEB J. 6, 3300–3309.

    PubMed  CAS  Google Scholar 

  22. Zhang Y., Zhou X., Ge X., Jiang J., Li M., Jia S., Yang X., Kan Y., Miao X., Zhao G., Li F., Huang Y. 2009. Insect-specific microRNA involved in the development of the silkworm Bombyx mori. PLoS One. 4, e4677.

    Article  PubMed  Google Scholar 

  23. Yu X., Zhou Q., Cai Y., Luo Q., Lin H., Hu S., Yu J. 2009. A discovery of novel microRNAs in the silkworm (Bombyx mori) genome. Genomics. 94, 438–444.

    Article  PubMed  CAS  Google Scholar 

  24. He P.A., Nie Z., Chen J., Lv Z., Sheng Q., Zhou S., Gao X., Kong L., Wu X., Jin Y., Zhang Y. 2008. Identification and characteristics of microRNAs from Bombyx mori. BMC Genomics. 9, 248.

    Article  PubMed  Google Scholar 

  25. Lu F.H., Tang S.M., Shen X.J., Wang N., Zhao Q.L., Zhang G.Z., Guo X.J. 2010. Molecular cloning and characterization of hatching enzyme-like gene in the silkworm, Bombyx mori. Mol. Biol. Rep. 37, 1175–1182.

    CAS  Google Scholar 

  26. Zhang X., Hu Z.Y., Li W.F., Li Q.R., Deng X.J., Yang W.Y., Cao Y., Zhou C.Z. 2009. Systematic cloning and analysis of autophagy-related genes from the silkworm Bombyx mori. BMC Mol. Biol. 10, 50.

    Article  PubMed  Google Scholar 

  27. Huang S.H., Shi R.J., Zhang J.Y., Wang Z., Huang L.Q. 2009. Cloning and characterization of a pyridoxine 5’-phosphate oxidase from silkworm. Bombyx mori. Insect. Mol. Biol. 18, 365–371.

    CAS  Google Scholar 

  28. Shahmuradov I.A., Solovyev V.V., Gammerman A.J. 2005. Plant promoter prediction with confidence estimation. Nucleic Acids Res. 33, 1069–1076.

    Article  PubMed  CAS  Google Scholar 

  29. Cui X., Xu S.M., Mu D.S., Yang Z.M. 2009. Genomic analysis of rice microRNA promoters and clusters. Gene. 431, 61–66.

    Article  PubMed  CAS  Google Scholar 

  30. Lewis S.E., Searle S.M., Harris N., Gibson M., Lyer V., Richter J., Wiel C., Bayraktaroglir L., Birney E., Crosby M.A., Kaminker J.S., Matthews B.B., Prochnik S.E., Smithy C.D., Tupy J.L., Rubin G.M., Misra S., Mungall C.J., Clamp M.E. 2002. Apollo: A sequence annotation editor. Genome Biol. 3, RESEARCH0082.

  31. Down T.A., Hubbard T.J. 2002. Computational detection and location of transcription start sites in mammalian genomic DNA. Genome Res. 12, 458–461.

    Article  PubMed  CAS  Google Scholar 

  32. Altuvia Y., Landgraf P., Lithwick G., Elefant N., Pfeffer S., Aravin A., Brownstein M.J., Tuschl T., Margalit H. 2005. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697–2706.

    Article  PubMed  CAS  Google Scholar 

  33. Bartel D.P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  34. Ambros V. 2004. The functions of animal microRNAs. Nature. 431, 350–355.

    Article  PubMed  CAS  Google Scholar 

  35. Lagos-Quintana M., Rauhut R., Meyer J., Borkhardt A., Tuschl T. 2003. New microRNAs from mouse and human. RNA. 9, 175–179.

    Article  PubMed  CAS  Google Scholar 

  36. Cullen B.R. 2004. Transcription and processing of human microRNA precursors. Mol. Cell. 16, 861–865.

    Article  PubMed  CAS  Google Scholar 

  37. Guddeti S., Zhang D.C., Li A.L., Leseberg C.H., Kang H., Li X.G., Zhai W.X., Johns M.A., Mao L. 2005. Molecular evolution of the rice miR395 gene family. Cell. Res. 15, 631–638.

    Article  PubMed  CAS  Google Scholar 

  38. Wang S., Zhu Q.H., Guo X., Gui Y., Bao J., Helliwell C., Fan L. 2007. Molecular evolution and selection of a gene encoding two tandem microRNAs in rice. FEBS Lett. 581, 4789–4793.

    Article  PubMed  CAS  Google Scholar 

  39. Tanzer A., Stadler P.F. Molecular evolution of a microRNA cluster. 2004. J. Mol. Biol. 339, 327–335.

    Article  PubMed  CAS  Google Scholar 

  40. Xu J., Wong C. 2008. A computational screen for mouse signaling pathways targeted by microRNA clusters. RNA. 14, 1276–1283.

    Article  PubMed  CAS  Google Scholar 

  41. Megraw M., Sethupathy P., Corda B., Hatzigeorgiou A.G. 2007. miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res. 35, D149–D155.

    Article  PubMed  CAS  Google Scholar 

  42. Zimin P.I., Gorchakov A.A., Demakov S.A., Zhimulev I.F. 2004. Creation of a new construct for cloning DNA and modeling the structure of Drosophila polytene chromosomes. Mol. Biol. (Moscow) 38, 250–255.

    Article  CAS  Google Scholar 

  43. Volinia S., Calin G.A., Liu C.G., Ambs S., Cimmino A., Petrocca F., Visone R., Iorio M., Roldo C., Ferracin M., Prueitt R.L., Yanaihara N., Lanza G., Scarpa A., Vecchione A., Negrini M., Harris C.C., Croce C.M. 2006. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U.S.A. 103, 2257–2261.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Jia Shen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Shen, X.J., Zou, Q. et al. Genomic analysis of silkworm microRNA promoters and clusters. Mol Biol 45, 197–203 (2011). https://doi.org/10.1134/S0026893310061068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310061068

Keywords

Navigation