Skip to main content
Log in

Effects of Sodium Selenite and Dithiothreitol on Expression of Endoplasmic Reticulum Selenoproteins and Apoptosis Markers in MSF7 Breast Adenocarcinoma Cells

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The endoplasmic reticulum (ER) stress inducers dithiothreitol (DTT) and sodium selenite (SS) were tested for effect on expression of ER selenoproteins and apoptosis markers in MCF7 breast adenocarcinoma cells. DTT used at 1 or 5 mM did not affect the survival of MCF7 cells. Based on the real-time PCR data and the protein expression levels of ER stress markers, ER stress was assumed to evolve along an adaptation pathway in MCF7 cells treated with 1 or 5 mM DTT, involving mainly the transcription factors IRE1 and ATF6 and the selenoproteins SELS, SELK, SELT, SELM, and SELN. Cell treatment with 0.01 μM SS decreases the mRNA levels of all genes examined. When the SS concentration was increased to 0.1 μM, an increase in expression was observed for key ER stress genes and apoptosis markers, including CHOP, GADD34, PUMA, BIM, ATF4, sXBP, uXBP, AKT1, BAX, and BAK. Higher SS concentrations were assumed to trigger the unfolded protein response (UPR) via a proapoptic signaling pathway involving PERK and an alternative IRE1 signaling pathway. Used at 1 μM, SS increased the mRNA levels of apoptosis markers, upregulated expression of a spliced form of XBP1, and substantially decreased the cell survival. SS (1 μM) was assumed to trigger apoptosis in MCF7 cells. The results indicate that both adaptive and proapoptic UPR signaling pathways are activated in cells, depending on the nature and concentration of the ER stress inducer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Azamjah N., Soltan-Zadeh Y., Zayeri F. 2019. Global trend of breast cancer mortality rate: A 25-year study. Asian Pac. J. Cancer Prev. 20, 2015–2020.

    PubMed  PubMed Central  Google Scholar 

  2. Tang Y., Wang Y., Kiani M.F., Wang B. 2016. Classification, treatment strategy, and associated drug resistance in breast cancer. Clin. Breast Cancer. 16, 335–343.

    PubMed  Google Scholar 

  3. Fisusi F.A., Akala E.O. 2019. Drug combinations in breast cancer therapy. Pharm. Nanotechnol. 7, 3–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Comşa Ş., Cîmpean A.M., Raica M. 2015. The story of MCF 7 breast cancer cell Line: 40 years of experience in research. Anticancer Res. 35, 3147–3154.

    PubMed  Google Scholar 

  5. Hotamisligil G.S., Davis R.J. 2016. Cell signaling and stress responses. Cold Spring Harb. Perspect. Biol. 8, a006072.

    PubMed  PubMed Central  Google Scholar 

  6. Almanza A., Carlesso A., Chintha C., Creedican S., Doultsinos D., Leuzzi B., Luís A., McCarthy N., Montibeller L., More S., Papaioannou A., Püschel F., Sassano M. L., Skoko J., Agostinis P., et al. 2019. Endoplasmic reticulum stress signaling: From basic mechanisms to clinical applications. FEBS J. 286 (2), 241–278.

    CAS  PubMed  Google Scholar 

  7. Lemmer I.L., Willemsen N., Hilal N., Bartelt A. 2021. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol. Metab. 20, 101169.

    Google Scholar 

  8. Cui Z., Li C., Li X., Zhang Q., Zhang Y., Shao J., Zhou K. 2015. Sodium selenite (Na2SeO3) induces apoptosis through the mitochondrial pathway in CNE-2 nasopharyngeal carcinoma cells. Int. J. Oncol. 46 (6), 2506–2514.

    CAS  PubMed  Google Scholar 

  9. Jiang Q., Li F., Shi K., Wu P., An J., Yang Y., Xu C. 2013. ATF4 activation by the p38MAPK–eIF4E axis mediates apoptosis and autophagy induced by selenite in Jurkat cells. FEBS Lett. 587 (15), 2420–2429.

    CAS  PubMed  Google Scholar 

  10. Liu T., Sun Y., Yang S., Liang X. 2020. Inhibitory effect of selenium on esophagus cancer cells and the related mechanism. J. Nutr. Sci. Vitaminol. 66 (5), 456–461.

    CAS  PubMed  Google Scholar 

  11. Bonfim N.E.S., Baranoski A., Mantovani M.S. 2020. Cytotoxicity of sodium selenite in HaCaT cells induces cell death and alters the mRNA expression of PUMA, ATR, and mTOR genes. J. Trace Elem. Med. Biol. 62, 126605.

    CAS  PubMed  Google Scholar 

  12. Yang L., Cai Y.-S., Xu K., Zhu J.-L., Li Y.-B., Wu X.-Q., Sun J., Lu S.-M., Xu P. 2018. Sodium selenite induces apoptosis and inhibits autophagy in human synovial sarcoma cell line SW982 in vitro. Mol. Med. Rep. 17 (5), 6560–6568.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Goltyaev M.V., Varlamova E.G., Novoselov S.V., Fesenko E.E. 2020. Activation of signal pathways of apoptosis under conditions of prolonged ER-stress caused by exposure of mouse testicular teratoma cells to selenium-containing compounds. Dokl. Biochem. Biophys. 490, 9–11. https://doi.org/10.1134/S160767292001007X

    Article  CAS  PubMed  Google Scholar 

  14. Kuznetsova Yu.P., Goltyaev M.V., Gorbacheva O.S., Novoselov S.V., Varlamova E.G., Fesenko E.E. 2018. Influence of sodium selenite on the mRNA expression of the mammalian selenocysteine-containing protein genes in testicle and prostate cancer cells. Dokl. Biochem. Biophys. 480, 131–134. https://doi.org/10.1134/S1607672918030018

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K., Suzuki N., Ogra Y. 2017. Bioavailability comparison of nine bioselenocompounds in vitro and in vivo. Int. J. Mol. 18, 506.

    Google Scholar 

  16. Misra S., Boylan M., Selvam A., Spallholz J.E., Björnstedt M. 2015. Redox-active selenium compounds: From toxicity and cell death to cancer treatment. Nutrients. 7, 3536–3556.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guan L., Han B., Li Z., Hua F., Huang F., Wei W., Yang Y., Xu C. 2009. Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells. Apoptosis. 14, 218–225.

    CAS  PubMed  Google Scholar 

  18. Okuno T., Honda E., Arakawa T., Ogino H., Ueno H. 2014. Glutathione-dependent cell cycle G1 arrest and apoptosis induction in human lung cancer A549 cells caused by methylseleninic acid: comparison with sodium selenite. Biol. Pharm. Bull. 37, 1831–1837.

    CAS  PubMed  Google Scholar 

  19. Palsamy P., Bidasee K.R., Shinohara T. 2014. Selenite cataracts: Activation of endoplasmic reticulum stress and loss of Nrf2/Keap1-dependent stress protection. Biochim. Biophys. Acta. 1842 (9), 1794–1805.

  20. Cui Z., Li C., Li X., Zhang Q., Zhang Y., Shao J., Zhou K. 2015. Sodium selenite (Na2SeO3) induces apoptosis through the mitochondrial pathway in CNE-2 nasopharyngeal carcinoma cells. Int. J. Oncol. 46 (6), 2506–2514.

    CAS  PubMed  Google Scholar 

  21. Badr D.M., Hafez H.F., Agha A.M., Shouman S.A. 2016. The combination of α-tocopheryl succinate and sodium selenite on breast cancer: A merit or a demerit? Oxid. Med. Cell Longev. 2016, 4741694.

    PubMed  PubMed Central  Google Scholar 

  22. Tartier L., McCarey Y.L., Biaglow J.E., Kochevar I.E., Held K.D. 2000. Apoptosis induced by dithiothreitol in HL-60 cells shows early activation of caspase 3 and is independent of mitochondria. Cell Death Differ. 7 (10), 1002–1010.

    CAS  PubMed  Google Scholar 

  23. Xiang X.Y., Yang X.C., Su J., Kang J.S., Wu Y., Xue Y.N., Dong Y.T., Sun L.K. 2016. Inhibition of autophagic flux by ROS promotes apoptosis during DTT-induced ER/oxidative stress in HeLa cells. Oncol. Rep. 35, 3471–3479.

    CAS  PubMed  Google Scholar 

  24. Hughes D.J., Kunická T., Schomburg L., Liška V., Swan N., Souček P. 2018. Expression of selenoprotein genes and association with selenium status in colorectal adenoma and colorectal cancer. Nutrients. 10 (11), 1812.

    PubMed Central  Google Scholar 

  25. Jia Y., Dai J., Zeng Z. 2020. Potential relationship between the selenoproteome and cancer. Mol. Clin. Oncol. 13 (6), 83.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Capone F., Polo A., Sorice A., Budillon A., Costantini S. 2020. Integrated analysis to study the relationship between tumor-associated selenoproteins: Focus on prostate cancer. Int. J. Mol. Sci. 21 (18), 6694.

    CAS  PubMed Central  Google Scholar 

  27. Li J., Zhu Y., Zhou Y., Jiang H.G., Chen Z.H., Lu B.H., Shen X.N. 2020. The SELS rs34713741 polymorphism is associated with susceptibility to colorectal cancer and gastric cancer: a meta-analysis. Genet. Test. Mol. Biomarkers. 24 (12), 835–844.

    CAS  PubMed  Google Scholar 

  28. Callejón-Leblic B., Arias-Borrego A., Rodríguez-Moro G., Roldán F.N., Pereira-Vega A., Gómez-Ariza J.L., García-Barrera T. 2021. Advances in lung cancer biomarkers: The role of (metal-) metabolites and selenoproteins. Adv. Clin. Chem. 100, 91–137.

    PubMed  Google Scholar 

  29. Varlamova E.G. 2020. Protein–protein interactions of ER-resident selenoproteins with their physiological partners. Biochimie. 171–172, 197–204. https://doi.org/10.1016/j.biochi.2020.03.012

    Article  CAS  PubMed  Google Scholar 

  30. Rocca C., Pasqua T., Boukhzar L., Anouar Y., Angelone T. 2019. Progress in the emerging role of selenoproteins in cardiovascular disease: Focus on endoplasmic reticulum-resident selenoproteins. Cell Mol. Life Sci. 76 (20), 3969–3985.

    CAS  PubMed  Google Scholar 

  31. Zhang C., Ge J., Liv M., Zhang Q., Talukder M., Li J.L. 2020. Selenium prevents cadmium-induced hepatotoxicity through modulation of endoplasmic reticulum-resident selenoproteins and attenuation of endoplasmic reticulum stress. Environ. Pollut. 260, 113873.

    CAS  PubMed  Google Scholar 

  32. Pitts M.W., Hoffmann P.R. 2018. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium. 70, 76–86.

    CAS  PubMed  Google Scholar 

  33. Wang P., Lu Z., He M., Shi B., Lei X., Shan A. 2020. The effects of endoplasmic-reticulum-resident selenoproteins in a nonalcoholic fatty liver disease pig model induced by a high-fat diet. Nutrients. 12 (3), 692.

    PubMed Central  Google Scholar 

  34. Varlamova E.G. 2018. Participation of selenoproteins localized in the ER in the processes occurring in this organelle and in the regulation of carcinogenesis-associated processes. J. Trace Elem. Med. Biol. 48, 172–180.

    PubMed  Google Scholar 

  35. Varlamova E.G., Goltyaev M.V., Fesenko E.E. 2019. Protein partners of selenoprotein SELM and the role of selenium compounds in regulation of its expression in human cancer cells. Dokl. Biochem. Biophys. 488, 300–303.

    CAS  PubMed  Google Scholar 

  36. Goltyaev M.V., Mal’tseva V.N., Varlamova E.G. 2020. Expression of ER-resident selenoproteins and activation of cancer cells apoptosis mechanisms under ER-stress conditions caused by methylseleninic acid. Gene. 755, 144884.

    CAS  PubMed  Google Scholar 

  37. Kim C., Kim B. 2018. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: a review. Nutrients. 10 (8), 1021.

    PubMed Central  Google Scholar 

  38. Harnoss J., Thomas A., Reichelt M., Guttman O., Wu T.D., Marsters S.A., Shemorry A., Lawrence D., Kan D., Segal E., Merchant M., Totpal K., Crocker L.M., Mesh K., Dohse M., et al. 2020. IRE1α disruption in triple-negative breast cancer cooperates with antiangiogenic therapy by reversing ER stress adaptation and remodeling the tumor microenvironment. Cancer Res. 80 (11), 2368–2379.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y., Roh Y.J., Han S.J., Park I., Lee H.M., Ok Y.S., Lee B.C., Lee S.R. 2020. Role of selenoproteins in redox regulation of signaling and the antioxidant system: a review. Antioxidants (Basel). 9 (5), 383.

    CAS  PubMed Central  Google Scholar 

  40. Du S., Zhou J., Jia Y., Huang K. 2010. SelK is a novel ER stress-regulated protein and protects HepG2 cells from ER stress agent-induced apoptosis. Arch. Biochem. Biophys. 502 (2), 137–143.

    CAS  PubMed  Google Scholar 

  41. Fan R.F., Cao C.Y., Chen M.H., Shi Q.X., Xu S.W. 2018. Gga–let–7f–3p promotes apoptosis in selenium deficiency-induced skeletal muscle by targeting selenoprotein K. Metallomics. 10 (7), 941–952.

    CAS  PubMed  Google Scholar 

  42. Addinsall A.B., Wright C.R., Andrikopoulos S., Poel C., Stupka N. 2018. Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochem J. 475 (6), 1037–1057.

    CAS  PubMed  Google Scholar 

  43. Marciel M.P., Hoffmann P.R. 2019. Molecular mechanisms by which selenoprotein K regulates immunity and cancer. Biol. Trace Elem. Res. 192 (1), 60–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee J.H., Park K.J., Jang J.K., Jeon Y.H., Ko K.Y., Kwon J.H., Lee S.R., Kim I.Y. 2015. Selenoprotein S-dependent selenoprotein K binding to p97(VCP) protein is essential for endoplasmic reticulum-associated degradation. J. Biol. Chem. 290 (50), 29941–29952.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shchedrina V.A., Everley R.A., Zhang Y., Gygi S.P., Hatfield D.L., Gladyshev V.N. 2011. Selenoprotein K binds multiprotein complexes and is involved in the regulation of endoplasmic reticulum homeostasis. J. Biol. Chem. 286 (50), 42937–42948.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang J.Q., Ren F.Z., Jiang Y.Y., Lei X. 2016. Characterization of selenoprotein M and its response to selenium deficiency in chicken brain. Biol. Trace Elem. Res. 170 (2), 449–458.

    CAS  PubMed  Google Scholar 

  47. Gong T., Hashimoto A.C., Sasuclark A.R., Khadka V.S., Gurary A., Pitts M.W. 2019. Selenoprotein M promotes hypothalamic leptin signaling and thioredoxin antioxidant activity. Antioxid. Redox Signal. https://doi.org/10.1089/ars.2018.7594

  48. Jiang H., Shi Q.Q., Ge L.Y., Zhuang Q.F., Xue D., Xu H.Y., He X.Z. 2019. Selenoprotein M stimulates the proliferative and metastatic capacities of renal cell carcinoma through activating the PI3K/AKT/mTOR pathway. Cancer Med. 8 (10), 4836–4844.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Varone E., Pozzer D., Di Modica S., Chernorudskiy A., Nogara L., Baraldo M., Cinquanta M., Fumagalli S., Villar-Quiles R.N., De Simoni M.G., Blaauw B., Ferreiro A., Zito E. 2019. SELENON (SEPN1) protects skeletal muscle from saturated fatty acid-induced ER stress and insulin resistance. Redox Biol. 24, 101176.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. AlRasheed M.M., AlAnzi A., AlShalhoub R., Abanmy N., Bakheet D. 2019. A study of the role of DIO1 and DIO2 polymorphism in thyroid cancer and drug response to therapy in the Saudi population. Saudi Pharm. J. 27 (6), 841–845.

    PubMed  PubMed Central  Google Scholar 

  51. Zevenbergen C., Groeneweg S., Swagemakers S.M.A., de Jong A., Medici-Van den Herik E., Rispens M., Klootwijk W., Medici M., de Rijke Y.B., Meima M.E., Larsen P.R., Chavatte L., Venter D., Peeters R.P., Van der Spek P.J., Visser W.E. 2019. Functional analysis of genetic variation in the SECIS element of thyroid hormone activating type 2 deiodinase. J. Clin. Endocrinol. Metab. 104 (5), 1369–1377.

    PubMed  Google Scholar 

  52. Sovolyova N., Healy S., Samali A., Logue S.E. 2014. Stressed to death – mechanisms of ER stress-induced cell death. Biol. Chem. 395 (1), 1–13.

    CAS  PubMed  Google Scholar 

  53. Hetz C., Zhang K., Kaufman R.J. 2020. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell. Biol. 21 (8), 421–438.

    CAS  PubMed  Google Scholar 

  54. Sano R., Reed J.C. 2013. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta. 1833 (12), 3460–3470.

  55. Ma urel M., Chevet E., Tavernier J., Gerlo S. 2014. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 39 (5), 245–254.

Download references

ACKNOWLEDGMENTS

We are grateful to the Department of Optical Microscopy and Spectrophotometry (Pushchino Biological Research Center, Russian Academy of Sciences, http://www.ckp-rf.ru/ckp/670266/).

Funding

This work was supported by State Contract no. 0191-2019-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Mal’tseva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: ASK1, apoptosis signal-regulating kinase 1; ATF4 and ATF6, activating transcription factors 4 and 6, respectively; Bak, Bax, and Bim, apoptosis inducers of the Bcl-2 family; CHOP, CCAAT enhancer-binding protein homologous protein; DIO2, iodothyronine deiodinase 2; IRE1, inositol-requiring enzyme 1; GADD34, growth arrest and DNA damage-inducible protein 34; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PUMA, p53 upregulated modulator of apoptosis; SELK, SELN, SELS, SELM, SELT, SELI, and SEP15, selenoproteins K, N, S, M, T, I, and 15, respectively; UPR, unfolded protein response; XBP1, X-box binding protein 1; ROS, reactive oxygen species; DTT, dithiothreitol; SS, sodium selenite; REL, relative expression level; PCR, polymerase chain reaction; ER, endoplasmic reticulum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mal’tseva, V.N., Goltyaev, M.V., Novoselov, S.V. et al. Effects of Sodium Selenite and Dithiothreitol on Expression of Endoplasmic Reticulum Selenoproteins and Apoptosis Markers in MSF7 Breast Adenocarcinoma Cells. Mol Biol 56, 97–106 (2022). https://doi.org/10.1134/S0026893322010058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322010058

Keywords:

Navigation