Skip to main content
Log in

Thermal Radiation of Graphene

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The problem of thermal radiation of ideal graphene is considered based on the theoretical concepts of surface electromagnetic waves and surface impedance. The intensity of thermal radiation of graphene is calculated as a function of the external radiation frequency. An attempt is made to explain the phenomenon of broadband (white) emission of graphene foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in the Casimir Effect (Oxford Univ. Press, Oxford, 2009).

    Book  Google Scholar 

  2. G. Gomez-Santos, Phys. Rev. B 80, 245424 (2009). https://doi.org/10.1103/PhysRevB.80.245424

    Article  ADS  Google Scholar 

  3. D. Drosdoff and L. M. Woods, Phys. Rev. B 82, 155459 (2010). https://doi.org/10.1103/PhysRevB.82.155459

    Article  ADS  Google Scholar 

  4. Heetae Kim, Seong Chu Lim, and Young Hee Lee, Phys. Lett. A 375, 2661 (2011). https://doi.org/10.1016/j.physleta.2011.05.051

    Article  ADS  Google Scholar 

  5. S. Sh. Rekhviashvili, A. A. Alikhanov, and Z. Z. Alisultanov, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 12, 332 (2018). https://doi.org/10.1134/S1027451018020325

    Article  Google Scholar 

  6. A. Grassi, G. Sironi, and G. Strini, Astrophys. Space Sci. 124, 203 (1986). https://doi.org/10.1007/BF00649761

    Article  ADS  Google Scholar 

  7. P. T. Landsberg and A. de Vos, J. Phys. A: Math. Gen. 22, 1073 (1989). https://doi.org/10.1088/0305-4470/22/8/021

    Article  ADS  Google Scholar 

  8. S. Sh. Rekhviashvili, Opt. Spectrosc. 128, 1435 (2020). https://doi.org/10.1134/S0030400X20090167

    Article  ADS  Google Scholar 

  9. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, Phys. Rev. Lett. 100, 117401 (2008). https://doi.org/10.1103/PhysRevLett.100.117401

    Article  ADS  Google Scholar 

  10. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science (Washington DC, U. S.) 320 (5881), 1308 (2008). https://doi.org/10.1126/science.1156965

    Article  ADS  Google Scholar 

  11. L. A. Falkovsky, Phys. Usp. 51, 887 (2008). https://doi.org/10.1070/PU2008v051n09ABEH006625

    Article  ADS  Google Scholar 

  12. L. Liu, M. Zhou, L. Jin, L. Li, Y. Mo, G. Su, X. Li, H. Zhu, and Y. Tian, Friction 7, 199 (2019). https://doi.org/10.1007/s40544-019-0268-4

    Article  Google Scholar 

  13. Y. J. Dappe, M. A. Basanta, F. Flores, and J. Ortega, Phys. Rev. B 74, 205434 (2006). https://doi.org/10.1103/PhysRevB.74.205434

    Article  ADS  Google Scholar 

  14. W. Strek, R. Tomala, M. Lukaszewicz, B. Cichy, Y. Gerasymchuk, P. Gluchowski, L. Marciniak, A. Bednarkiewicz, and D. Hreniak, Sci. Rep. 7, 41281 (2017). https://doi.org/10.1038/srep41281

    Article  ADS  Google Scholar 

  15. W. Strek and R. Tomala, Phys. B (Amsterdam, Neth.) 579, 411840 (2020). https://doi.org/10.1016/j.physb.2019.411840

  16. D. W. Hosmer and S. Lemeshow, Applied Logistic Regression (Wiley, New York, 2000).

    Book  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  18. J. W. Weber, A. A. Bol, and M. C. M. van de Sanden, Appl. Phys. Lett. 105, 013105 (2014). https://doi.org/10.1063/1.4889852

    Article  ADS  Google Scholar 

  19. E. M. Livshits and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

  20. M. Junaid, M. H. Md Khir, G. Witjaksono, Z. Ullah, N. Tansu, M. S. M. Saheed, P. Kumar, L. Hing Wah, S. A. Magsi, and M. A. Siddiqui, Molecules 25, 4217 (2020). https://doi.org/10.3390/molecules25184217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Sh. Rekhviashvili or W. Strek.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekhviashvili, S.S., Strek, W. Thermal Radiation of Graphene. Opt. Spectrosc. 130, 18–22 (2022). https://doi.org/10.1134/S0030400X22010106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X22010106

Keywords:

Navigation