Skip to main content
Log in

Immobilization of Heterocycle-Appended Porphyrins on UiO-66 and UiO-67 MOFs

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

An approach to immobilization of heterocycle-appended porphyrins bearing one or two anchoring groups at the surface of UiO-66 and UiO-67 MOFs has been developed. For this purpose, carboxy-substituted porphyrin’s derivatives Ni-4 and Ni-5 have been synthesized for the first time. It has been shown that the presence of one anchoring carboxy group at the periphery of the porphyrin is insufficient for the efficient immobilization. At the same time, the prepared pyrazinoporphyrin bearing two carboxy groups is efficiently immobilized at the surface of the MOF particles in 1 : 16 ratio with respect to hexanuclear Zr(IV) node clusters. The post-synthetic modification has been found to be the most efficient approach to prepare the target hybrid materials. The prepared materials are completely characterized by means of powder X-ray diffraction, scanning electron microscopy, and UV-vis diffuse reflectance and IR spectroscopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. Zou and D. Liu, Mater. Today Chem. 12, 139 (2019). https://doi.org/10.1016/j.mtchem.2018.12.004

    Article  CAS  Google Scholar 

  2. B. Wang, L.-H. Xie, X. Wang, et al., Green Energy Environ. 3, 191 (2018). https://doi.org/10.1016/j.gee.2018.03.001

    Article  Google Scholar 

  3. H. Li, L. Li, R. -B. Lin, et al., EnergyChem. 1, 100006 (2019). https://doi.org/10.1016/j.enchem.2019.100006

    Article  Google Scholar 

  4. X. Liu, Front. Chem. Sci. Eng. 14, 216 (2020). https://doi.org/10.1007/s11705-019-1857-5

    Article  CAS  Google Scholar 

  5. M. Taddei, Coord. Chem. Rev. 343, 1 (2017). https://doi.org/10.1016/j.ccr.2017.04.010

    Article  CAS  Google Scholar 

  6. M. Ding, X. Cai, and H.-L. Jiang, Chem. Sci. 10, 10209 (2019). https://doi.org/10.1039/C9SC03916C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. A. Trickett, K. J. Gagnon, S. Lee, et al., Angew. Chem., Int. Ed. Engl. 54, 11162 (2015). https://doi.org/10.1002/anie.201505461

    Article  CAS  Google Scholar 

  8. A. A. Sapianik and V. P. Fedin, Russ. J. Coord. Chem. 46, 443 (2020). https://doi.org/10.1134/S1070328420060093

    Article  Google Scholar 

  9. A. Dhakshinamoorthy, A. Santiago-Portillo, A. M. Asiri, et al., ChemCatChem. 11, 899 (2019). https://doi.org/10.1002/cctc.201801452

    Article  CAS  Google Scholar 

  10. C. Caratelli, J. Hajek, F. G. Cirujano, et al., J. Catal. 352, 401 (2017). https://doi.org/10.1016/j.jcat.2017.06.014

    Article  CAS  Google Scholar 

  11. F. Vermoortele, B. Bueken, G. Le Bars, et al., J. Am. Chem. Soc. 135, 11465 (2013). https://doi.org/10.1021/ja405078u

    Article  CAS  PubMed  Google Scholar 

  12. Y. Ye, H. Liu, Y. Li, et al., Talanta 200, 472 (2019). https://doi.org/10.1016/j.talanta.2019.01.086

    Article  CAS  PubMed  Google Scholar 

  13. L. Wang, P. Jin, S. Duan, et al., Environ. Sci. Nano 6, 2652. https://doi.org/10.1039/C9EN00460B

  14. J. Liang, Y.-Q. Xie, Q. Wu, et al., Inorg. Chem. 57, 2584 (2018). https://doi.org/10.1021/acs.inorgchem.7b02983

    Article  CAS  PubMed  Google Scholar 

  15. Y. Gao, J. Lu, J. Xia, et al., ACS Appl. Mater. Interfaces 12, 12706 (2020). https://doi.org/10.1021/acsami.9b21122

    Article  CAS  PubMed  Google Scholar 

  16. L. Zhao, J. Yang, M. Gong, et al., J. Mater. Chem. C 8, 3904 (2020). https://doi.org/10.1039/C9TC06624A

    Article  CAS  Google Scholar 

  17. J.-L. Kan, Y. Jiang, A. Xue, et al., Inorg. Chem. 57, 5420 (2018). https://doi.org/10.1021/acs.inorgchem.8b00384

    Article  CAS  PubMed  Google Scholar 

  18. I. A. Abdulaeva, K. P. Birin, A. Bessmertnykh-Lemeune, et al., Coord. Chem. Rev. 407, 213108 (2020). https://doi.org/10.1016/j.ccr.2019.213108

    Article  CAS  Google Scholar 

  19. K. P. Birin, A. I. Poddubnaya, I. A. Abdulaeva, et al., Dyes Pigm. 156, 243 (2018). https://doi.org/10.1016/j.dyepig.2018.04.009

    Article  CAS  Google Scholar 

  20. I. A. Abdulaeva, D. A. Polivanovskaia, K. P. Birin, et al., Mendeleev Commun. 30 (2), 162 (2020). https://doi.org/10.1016/j.mencom.2020.03.010

    Article  CAS  Google Scholar 

  21. K. P. Birin, I. A. Abdulaeva, A. I. Poddubnaya, et al., Dyes Pigm. 181, 108550 (2020). https://doi.org/10.1016/j.dyepig.2020.108550

    Article  CAS  Google Scholar 

  22. I. A. Abdulaeva, K. P. Birin, Y. G. Gorbunova, et al., J. Porphyr. Phthalocyanines 22, 619 (2018). https://doi.org/10.1142/S1088424618500475

    Article  CAS  Google Scholar 

  23. I. A. Abdulaeva, K. P. Birin, A. A. Sinelshchikova, et al., CrystEngComm. 21, 1488 (2019). https://doi.org/10.1039/C8CE01992D

    Article  CAS  Google Scholar 

  24. I. A. Abdulaeva, K. P. Birin, J. Michalak, et al., New J. Chem. 40, 5758 (2016). https://doi.org/10.1039/C5NJ03247D

    Article  CAS  Google Scholar 

  25. W. L. F. Armarego and C. L. L. Chai, Purification of Laboratory Chemicals (Elsevier, Butterworth-Heinemann, 2009).

    Google Scholar 

  26. M. Lo, J.-F. Lefebvre, D. Leclercq, et al., Org. Lett. 13, 3110 (2011). https://doi.org/10.1021/ol2010215

    Article  CAS  PubMed  Google Scholar 

  27. F. Yang, W. Li, and B. Tang, J. Alloys Compd. 733, 8 (2018). https://doi.org/10.1016/j.jallcom.2017.10.129

    Article  CAS  Google Scholar 

  28. M. J. Katz, Z. J. Brown, Y. J. Colon, et al., Chem. Commun. 49, 9449 (2013). https://doi.org/10.1039/c3cc46105j

    Article  CAS  Google Scholar 

  29. A. Schaate, P. Roy, A. Godt, et al., Chem. Eur. J. 17, 6643 (2011). https://doi.org/10.1002/chem.201003211

  30. G. Nickerl, M. Leistner, S. Helten, et al., Inorg. Chem. Front. 1, 325 (2014). https://doi.org/10.1039/C3QI00093A

    Article  CAS  Google Scholar 

  31. G. Deacon, Coord. Chem. Rev. 33, 227 (1980). https://doi.org/10.1016/S0010-8545(00)80455-5

    Article  CAS  Google Scholar 

  32. I. Hisaki, S. Nakagawa, N. Tohnai, et al., Angew. Chem., Int. Ed. Engl. 54, 3008 (2015).https://doi.org/10.1002/anie.201411438

  33. M. Ermer, J. Mehler, M. Kriesten, et al., Dalton Trans. 47, 14426 (2018). https://doi.org/10.1039/C8DT02999G

    Article  CAS  PubMed  Google Scholar 

  34. J. H. Cavka, S. Jakobsen, U. Olsbye, et al., J. Am. Chem. Soc. 130, 13850 (2008). https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Analytical work was carried out on the equipment of the Shared Facility Centers for Physical Methods of Investigation at IPCE RAS and IGIC RAS.

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 19-33-70036, synthesis of Ni-4 and Ni-5) and the Council for Grants of the President of the Russian Federation (grant MK-1454.2019.3, synthesis of hybrid materials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Birin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birin, K.P., Abdulaeva, I.A., Polivanovskaya, D.A. et al. Immobilization of Heterocycle-Appended Porphyrins on UiO-66 and UiO-67 MOFs. Russ. J. Inorg. Chem. 66, 193–201 (2021). https://doi.org/10.1134/S0036023621020029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621020029

Keywords:

Navigation