Skip to main content
Log in

Modeling of aggregation of fractal dust clusters in a laminar protoplanetary disk

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The evolutionary hydrodynamic model for the formation and growth of loose dust aggregates in the aerodisperse medium of a laminar disk, which was originally comprised of the gas and solid (sub)micrometer particles, is considered as applied to the problem of the formation of planetesimals in the Solar protoplanetary cloud. The model takes into account the fractal properties of dust clusters. It is shown that the clusters partly merge in the process of cluster-cluster coagulation, giving rise to the formation of large fractal aggregates that are the basic structure-forming elements of loose protoplanetesimals arising as a result of physicochemical and hydrodynamic processes similar to the processes of growth of the fractal clusters. Earlier, the modeling was conventionally performed in an “ordinary” continuous medium without considering the multifractional structure of the dust component of the protoplanetary cloud and the fractal nature of the dust clusters being formed during its evolution. Instead, we propose to consider a complex of loose dust aggregates as a special type of continuous medium, namely, the fractal medium for which there exist points and regions that are not filled with its particles. We suggest performing the hydrodynamic modeling of this medium, which has a noninteger mass dimensionality, in a fractional integral model (its differential form) that takes the fractality into account using fractional integrals whose order is determined by a fractal dimensionality of the disk medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, F.C. and Watkins, R., Vortices in Circumstellar Disks, Astrophys. J., 1995, vol. 451, pp. 314–327.

    Article  ADS  Google Scholar 

  • Barge, P. and Sommeria, J., Did Planet Formation Begin Inside Persistent Gaseous Vortices?, Astron. Astrophys., 1995, vol. 295, pp. L1–L4.

    ADS  Google Scholar 

  • Bertini, I., Gutierrez, P.J., and Sabolo, W., The Influence of the Monomer Shape in the First Stage of Dust Growth in the Protoplanetary Disk, Astron. Astrophys., 2009, vol. 504, p. 625.

    Article  ADS  Google Scholar 

  • Blum, J., Wurm, G., Kempf, S., and Henning, Th., The Brownian Motion of Dust in the Solar Nebula: An Experimental Approach to the Problem of Pre-Planetary Dust Aggregation, Icarus, 1996, vol. 124, pp. 441–451.

    Article  ADS  Google Scholar 

  • Blum, J., Grain Growth and Coagulation, in ASP Conf. Ser. Astrophysics of Dust, Witt, A.N., Clayton, G.C., and Draine, B.T., Eds., 2004, San Francisco: ASP, vol. 309, p. 369.

    Google Scholar 

  • Blum, J. and Wurm, G., The Growth Mechanisms of Macroscopic Bodies in Protoplanetary Disks, Annu. Rev. Astron. Astrophys., 2008, vol. 46, pp. 21–56.

    Article  ADS  Google Scholar 

  • Brandenburg, A. and Hodgson, L.S., Turbulence Effects in Planetesimal Formation, Astron. Astrophys., 1998, vol. 330, pp. 1169–1174.

    ADS  Google Scholar 

  • Chapman, S. and Cowling, T.G., The Mathematical Theory of Non-Uniform Gases, Cambridge: Cambridge University Press, 1953; Moscow: Inostannaya literatura, 1960.

    Google Scholar 

  • Chavanis, P.-H., Trapping of Dust by Coherent Vortices in the Solar Nebula, Astron. Astrophys., 2000, vol. 356, pp. 1089–1111. http://arxiv.org/abs/astro-ph/9912087

    ADS  Google Scholar 

  • Chen, Z.-Y., Meakin, P., and Deutch, J.M., Comment on “Hydrodinamic Behavior of Fractal Aggregates”, Phys. Rev. Lett., 1987, no. 18, p. 2121.

    Google Scholar 

  • Dominik, C. and Tielens, A.G.G.M., The Physics of Dust Coagulation and the Structure of Dust Aggregates in Space, Astrophys. J., 1997, vol. 480, pp. 647–673.

    Article  ADS  Google Scholar 

  • Dubrulle, B., Differential Rotation as a Source of Angular Momentum Transfer in the Solar Nebula, Icarus, 1993, vol. 106, pp. 59–76.

    Article  ADS  Google Scholar 

  • Dubrulle, B., Morfill, G., and Sterzik, M., The Dust Subdisk in the Protoplanetary Nebula, Icarus, 1995, vol. 114, pp. 237–246.

    Article  ADS  Google Scholar 

  • Emets, E.P., Novoselova, A.E., and Poluektov, P.P., In-situ Determination of Fractal Dimensionality of Aerosol Particles, Usp. Fiz. Nauk, 1994, vol. 164, no. 9, pp. 959–966.

    Article  Google Scholar 

  • Goldrich, P. and Ward, W.R., The Formation of Planetesimals, Astrophys. J., 1973, vol. 183, no. 3, pp. 1051–1061.

    Article  ADS  Google Scholar 

  • Gor’kavyi, N.N., Fridman, A.M., Fizika planetnykh kolets: Nebesnaya mekhanika sploshnoi sredy (Physics of Planetary Rings: Celestial Mechanics of Continuous Medium), Moscow: Nauka, 1994.

    Google Scholar 

  • Heng, K. and Kenyon, S.J., Vortices as Nurseries for Planetesimal Formation in Protoplanetary Discs, Mon. Notic. Roy. Astron. Soc., 2010, vol. 408, no. 3, pp. 1476–1493.

    Article  ADS  Google Scholar 

  • Johansen, A., Klahr, H., and Henning, T., Gravoturbulent Formation of Planetesimals, Astrophys. J., 2006, vol. 636, pp. 1121–1134.

    Article  ADS  Google Scholar 

  • Johansen, A., Oishi, J.S., MacLow M.M., et al., Rapid Planetesimal Formation in Turbulent Circumstellar Disks, Nature, 2007a, vol. 448, pp. 1022–1025.

    Article  ADS  Google Scholar 

  • Johansen, A. and Youdin, A., Protoplanetary Disk Turbulence Driven by the Streaming Instability: Nonlinear Saturation and Particle Concentration, Astrophys. J., 2007b, vol. 662, pp. 627–641.

    Article  ADS  Google Scholar 

  • Johansen, A., Youdin, A., and Klahr, H., Zonal Flows and Long-Lived Axisymmetric Pressure Bumps in Magnetorotational Turbulence, Astrophys. J., 2009, vol. 697, pp. 1269–1289.

    Article  ADS  Google Scholar 

  • Jullien, R.M., Transparency Effects in Cluster-Cluster Aggregation with Linear Trajectories, J. Phys. A, 1984, vol. 17, pp. L771–L776.

    Article  MathSciNet  ADS  Google Scholar 

  • Jullien, R., A New Model of Cluster Aggregation, J. Phys. A, 1986, vol. 19, no. 11, pp. 2129–2136.

    Article  ADS  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Fractional Differential Equations: An Emergent Field in Applied and Mathematical Sciences, in Factorization, Singular Operators and Related Problems, Samko, S., Lebre, A., and Dos Santos, A.F., Eds., London: Kluwer Acad. Publ., 2003, pp. 151–173.

    Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Theory and Appllications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.

    Google Scholar 

  • Klahr, H. and Bodenheimer, P., Turbulence in Accretion Disks: Vorticity Generation and Angular Momentum Transport via the Global Baroclinic Instability, Astrophys. J., 2003, vol. 582, pp. 869–892.

    Article  ADS  Google Scholar 

  • Klahr, H. and Bodenheimer, P., Formation of Giant Planets by Concurrent Accretion of Solids and Gas inside an Anticyclonic Vortex, Astrophys. J., 2006, vol. 639, pp. 432–440.

    Article  ADS  Google Scholar 

  • Kolb, M., Botet, R., and Jullien, R., Scaling of Kinetically Growing Clusters, Phys. Rev. Lett., 1983, vol. 51, no. 13, pp. 1123–1126.

    Article  ADS  Google Scholar 

  • Kolesnichenko, A.V., Synergetic Mechanism of the Development of Coherent Structures in the Continual Theory of Developed Turbulence, Solar Syst. Res., 2004, vol. 38, no. 5, pp. 351–371.

    Article  ADS  Google Scholar 

  • Kolesnichenko, A.V., The Role of Noise-Induced Nonequilibrium Phase Transitions in the Structurization of Hydrodynamic Turbulence, Solar Syst. Res., 2005, vol. 39, no. 3, pp. 214–230.

    Article  ADS  Google Scholar 

  • Kolesnichenko, A.V. and Marov, M.Ya., Turbulentnost’ i samoorganizatsiya. Problemy modelirovaniya kosmicheskikh i prirodnykh sred (Turbulence and SelfOrganization. Simulation Problems for Space and Nature Mediums), Moscow: BINOM. Laboratoriya znanii, 2009.

    Google Scholar 

  • Kolesnichenko, A.V., On the Simulation of Helical Turbulence in an Astrophysical Nonmagnetic Disk, Solar Syst. Res., 2011, vol. 45, no. 3, pp. 246–263.

    Article  ADS  Google Scholar 

  • Kulak, M.I., Fraktal’naya mekhanika materialov (Fractal Mechanics for Materials), Minsk: Vysheishaya shkola, 2002.

    Google Scholar 

  • Mandelbrot, B.B., The Fractal Geometry of Nature, New York: Freeman, 1982.

    MATH  Google Scholar 

  • Marov, M.Ya., Kolesnichenko, A.V., Makalkin, A.B., et al., From Protosolar Cloud to Planetary System. Early Evolution Model of Gas-Dust Disk, in Problemy zarozhdeniya i evolyutsii biosfery (Problems of Biosphere Origin and Evolution), Galimov, E.M., Ed., Moscow: URSS, 2008, pp. 223–273.

    Google Scholar 

  • Matthews, L.S., Land, V., and Hyde, T.W., Charging and Coagulation of Dust in Protoplanetary Plasma Environments, Astrophys. J., 2012, vol. 744, no. 1.

    Google Scholar 

  • Meakin, P., Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation, Phys. Rev. Lett., 1983, vol. 51, no. 13, pp. 1119–1122.

    Article  ADS  Google Scholar 

  • Meakin, P., Effects of Cluster Trajectories on Cluster-Cluster Aggregation: A Comparison of Linear and Brownian Trajectories in Twoand Three-Dimensional Simulations, Phys. Rev., 1984, vol. 29, no. 2, pp. 997–999.

    Article  ADS  Google Scholar 

  • Meakin, P., Donn, B., and Mulholland, G., Collisions between Point Masses and Fractal Aggregates, Langmuir, 1989, vol. 5, pp. 510–518.

    Article  Google Scholar 

  • Mikhailov, E.F. and Vlasenko, S.S., Fractal Structures Formation in Gas Phase, Usp. Fiz. Nauk, 1995, vol. 165, no. 3, pp. 263–283.

    Article  Google Scholar 

  • Mizuno, H., Markiewicz, W.J., and Völk, H.J., Grain Growth in Turbulent Protoplanetary Accretion Disks, Astron. Astrophys., 1988, vol. 195, pp. 183–192.

    ADS  Google Scholar 

  • Mizuno, H., Grain Growth in the Turbulent Accretion Disk Solar Nebula, Icarus, 1989, vol. 80, pp. 189–201.

    Article  ADS  Google Scholar 

  • Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika (Statistical Hydromechanics), St. Petersburg: Gidrometeoizdat, 1996, vol. 2.

    Google Scholar 

  • Nakagawa, Y., Nakazawa, K., and Hayashi, C., Growth and Sedimentation of Dust Grains in the Primordial Solar Nebula, Icarus, 1981, vol. 45, pp. 517–528.

    Article  ADS  Google Scholar 

  • Nakagawa, Y., Hayashi, C., and Nakazawa, K., Accumulation of Planetesimals in the Solar Nebula, Icarus, 1983, vol. 54, pp. 361–376.

    Article  ADS  Google Scholar 

  • Nakagawa, Y., Sekiya, M., and Hayashi, C., Settling and Growth of Dust Particles in a Laminar Phase of a Low-Mass Solar Nebula, Icarus, 1986, vol. 67, pp. 375–390.

    Article  ADS  Google Scholar 

  • Nakamoto, T. and Nakagawa, Y., Formation, Early Evolution, and Gravitational Stability of Protoplanetary Disks, Astrophys. J., 1994, vol. 421, pp. 640–651.

    Article  ADS  Google Scholar 

  • Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Mediums), Moscow: Nauka, 1987, part 1.

    Google Scholar 

  • Okuzumi, S., Electric Charging of Dust Aggregates and Its Effect on Dust Coagulation in Protoplanetary Disks, Astrophys. J., 2009a, vol. 698, pp. 1122–1135.

    Article  ADS  Google Scholar 

  • Okuzumi, S., Tanaka, H., and Sakagami, M.-A., Numerical Modeling of the Coagulation and Porosity Evolution of Dust Aggregates, Astrophys. J., 2009b, vol. 707, pp. 1247–1264.

    Article  ADS  Google Scholar 

  • Okuzumi, S., Tanaka, H., Takeuchu, T., and Sakagami, M.-A., Electrostatic Barrier against Dust Growth in Protoplanetary Disks. 1. Classifying the Evolution of Size Distribution, Astrophys. J., 2011, vol. 731, p. 95.

    Article  ADS  Google Scholar 

  • Ormel, C.W., Spaans, M., and Tielens, A.G.G.M., Dust Coagulation in Protoplanetary Disks: Porosity Matters, Astron. Astrophys., 2007, vol. 461, pp. 215–236.

    Article  ADS  Google Scholar 

  • Ossenkopf, V., Dust Coagulation in Dense Molecular Clouds: The Formation of Fluffy Aggregates, Astron. Astrophys., 1993, vol. 280, pp. 617–646.

    ADS  Google Scholar 

  • Perry, J., Kimery, J., Matthews, L.S., and Hyde, T.W., Effects of Monomer Shape on the Formation of Fractal Aggregates under a Power Law Distribution, Proc. 43rd Lanuar and Planetary Sci. Conf., Woodlands, 2012.

    Google Scholar 

  • Piskunov, V.N., Dinamika aerozolei (Aerosols Dynamics), Moscow: Fizmatlit, 2010.

    Google Scholar 

  • Roy, N. and Ray, A.K., Fractal Features in Accretion Discs, Mon. Notic. Roy. Astron. Soc., 2009, vol. 397, no. 3, pp. 1374–1385.

    Article  ADS  Google Scholar 

  • Safronov, V.S., On Gravity Instability in Flat Rotating Systems with Axial Symmetry, Dokl. Akad. Nauk SSSR, 1960, vol. 130, no. 1, pp. 53–56.

    MathSciNet  Google Scholar 

  • Safronov, V.S., Evolyutsiya doplanetnogo oblaka i obrazovanie Zemli i planet (Evolution of Protoplanetary Cloud and the Earth and Planets Formation), Moscow: Nauka, 1969.

    Google Scholar 

  • Samko, S.G., Kilbas, A.A., and Marichev, O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Integrals and Fractional Derivatives and Their Applications), Minsk: Nauka i tekhnika, 1987.

    MATH  Google Scholar 

  • Smirnov, B.M., Fractal Clusters, Usp. Fiz. Nauk, 1986, vol. 149, no. 2, pp. 177–219.

    Article  Google Scholar 

  • Smirnov, B.M., Fizika fraktal’nykh kllasterov (Physics of Fractal Clusters), Moscow: Nauka, 1991.

    Google Scholar 

  • Smirnov, B.M., Processes with Clusters and Small Particles Participation in Buffer Gas, Usp. Fiz. Nauk, 2011, vol. 181, no. 7, pp. 713–745.

    Article  Google Scholar 

  • Strichartz, R.S., Analysis on Fractals, Notic. Amer. Math. Soc., 1999, vol. 46, no. 10, pp. 1199–1208.

    MathSciNet  MATH  Google Scholar 

  • Sutherland, D.N., Comments on Vold’s Simulation of Floc Formation, J. Colloid Interface Sci., 1966, vol. 22, pp. 300–302.

    Article  Google Scholar 

  • Suyama, T., Wada, K., and Tanaka, H., Numerical Simulation of Density Evolution of Dust Aggregates in Protoplanetary Disks. I. Head-on Collisions, Astrophys. J., 2008, vol. 684, pp. 1310–1322.

    Article  ADS  Google Scholar 

  • Suyama, T., Wada, K., Tanaka, H., and Okuzumi, S., Geometrical Cross Sections of Dust Aggregates and a Compression Model for Aggregate Collisions, Astrophys. J., 2012, vol. 753, p. 115.

    Article  ADS  Google Scholar 

  • Tanga, P., Babiano, A., Dubrulle, B., and Provenzale, A., Forming Planetosimals in Vortices, Icarus, 1996, vol. 121, pp. 158–170.

    Article  ADS  Google Scholar 

  • Tarasov, V.E., Fractional Hydrodynamic Equations for Fractal Media, Ann. Phys., 2005, vol. 318, no. 2, pp. 286–307.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Tarasov, V.E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer. Higher Education Press, 2010.

    MATH  Google Scholar 

  • Toomre, A., On the Gravitational Stability of a Disk of Stars, Astrophys. J., 1964, vol. 139, pp. 1217–1238.

    Article  ADS  Google Scholar 

  • Uchaikin, V.V., Metod drobnykh proizvodnykh (Fractional Derivatives Method), Ulyanovsk: Artishok, 2008.

    Google Scholar 

  • Vityazev, A.V., Pechernikova, G.N., and Safronov, V.S., Planety zemnoi gruppy. Proiskhozhdenie i rannyaya evolyutsiya (Planets of the Earth Group. Origin and Early Evolution), Moscow: Nauka, 1990.

    Google Scholar 

  • Vold, M.J., Computer Simulation of Floc Formation in a Colloidal Suspension, J. Colloid Interface Sci., 1963, vol. 18, pp. 684–695.

    Article  Google Scholar 

  • Wada, K., Tanaka, H., Suyama, T., et al., Simulation of Dust Aggregate Collisions. II. Compression and Disruption of Three-Dimensional Aggregates in Head-on Collisions, Astrophys. J., 2008, vol. 677, pp. 1296–1308.

    Article  ADS  Google Scholar 

  • Wada, K., Tanaka, H., Suyama, T., et al., Collisional Growth Conditions for Dust Aggregates, Astrophys. J., 2009, vol. 702, pp. 1490–1501.

    Article  ADS  Google Scholar 

  • Weidenschilling, S.J., Dust to Planetesimals: Settling and Coagulation in the Solar Nebula, Icarus, 1980, vol. 44, pp. 172–189.

    Article  ADS  Google Scholar 

  • Wiltzius, P., Hydrodinamic Behavior of Fractal Aggregates, Phys. Rev. Lett., 1987, vol. 58, no. 7, pp. 710–713.

    Article  ADS  Google Scholar 

  • Witten, T.A. and Sander, L.M., Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, Phys. Rev. Lett., 1981, vol. 47, pp. 1400–1403.

    Article  ADS  Google Scholar 

  • Youdin, A.N. and Shu, F., Planetesimal Formation by Gravitational Instability, Astrophys. J., 2002, vol. 580, pp. 494–505.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Kolesnichenko, M.Ya. Marov, 2013, published in Astronomicheskii Vestnik, 2013, Vol. 47, No. 2, pp. 92–111.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesnichenko, A.V., Marov, M.Y. Modeling of aggregation of fractal dust clusters in a laminar protoplanetary disk. Sol Syst Res 47, 80–98 (2013). https://doi.org/10.1134/S0038094613020056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094613020056

Keywords

Navigation