Skip to main content
Log in

New approach to calculating the spectrum of a quantum space–time

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the dynamics of a massive pointlike particle coupled to gravity in four space–time dimensions. It has the same degrees of freedom as an ordinary particle: its coordinates with respect to a chosen origin (observer) and the canonically conjugate momenta. The effect of gravity is that such a particle is a black hole: its momentum becomes spacelike at a distances to the origin less than the Schwarzschild radius. This happens because the phase space of the particle has a nontrivial structure: the momentum space has curvature, and this curvature depends on the position in the coordinate space. The momentum space curvature in turn leads to the coordinate operator in quantum theory having a nontrivial spectrum. This spectrum is independent of the particle mass and determines the accessible points of space–time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Rovelli and L. Smolin, “Discreteness of area and volume in quantum gravity,” Nucl. Phys. B, 442, 593–619 (1995); Erratum, 456, 753–754 (1995); arXiv:gr-qc/9411005v1 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A. Ashtekar and J. Lewandowski, “Quantum theory of geometry. I. Area operators,” Class. Q. Grav., 14, A55–A81 (1997); arXiv:gr-qc/9602046v2 (1996).

  3. J. Ambjørn, J. Jurkiewicz, and R. Loll, “Nonperturbative Lorentzian path integral for gravity,” Phys. Rev. Lett., 924–927 (2000); arXiv:hep-th/0002050v3 (2000); “Emergence of a 4D world from causal quantum gravity,” Phys. Rev. Lett., 93, 131301 (2004);arXiv:hep-th/0404156v4 (2004); “Reconstructing the universe,” Phys. Rev. D, 72, 064014 (2005); arXiv:hep-th/0505154v2 (2005).

    Google Scholar 

  4. M. Bronstein, “Quantentheorie schwacher Gravitationsfelder,” Phys. Z. Sowjetunion, 9, 140–157 (1936).

    MATH  Google Scholar 

  5. G.’t Hooft, “Canonical quantization of gravitating point particles in 2+1 dimensions,” Class. Q. Grav., 10, 1653–1664 (1993); “Quantization of point particles in (2+1)-dimensional gravity and spacetime discreteness,” Class. Q. Grav., 13, 1023–1039 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. H.-J. Matschull and M. Welling, “Quantum mechanics of a point particle in 2+1 dimensional gravity,” Class. Q. Grav., 15, 2981–3030 (1998); arXiv:gr-qc/9708054v2 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. N. Starodubtsev, “Phase space of a gravitating particle and dimensional reduction at the Planck scale,” Theor. Math. Phys., 185, 1527–1532 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. W. MacDowell and F. Mansouri, “Unified geometric theory of gravity and supergravity,” Phys. Rev. Lett., 38, 739–742 (1977); Erratum, 38, 1376 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. W. Moore and N. Seiberg, “Taming the conformal zoo,” Phys. Lett. B, 220, 422–430 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Elitzur, G. W. Moore, A. Schwimmer, and N. Seiberg, “Remarks on the canonical quantization of the Chern–Simons–Witten theory,” Nucl. Phys. B, 326, 108–134 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Carlip, “Statistical mechanics and black hole thermodynamics,” Nucl. Phys. B: Proc. Suppl., 57, 8–12 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. E. Witten, “On holomorphic factorization of WZW and coset models,” Commun. Math. Phys., 144, 189–212 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. G.’t Hooft, “Magnetic monopoles in unified gauge theories,” Nucl. Phys. B, 79, 276–284 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. M. Polyakov, “Particle spectrum in quantum field theory,” JETP Lett., 20, 194–194 (1974).

    ADS  Google Scholar 

  15. A. Yu. Alekseev and A. Z. Malkin, “Symplectic structure of the moduli space of flat connection on a Riemann surface,” Commun. Math. Phys., 169, 99–119 (1995); arXiv:hep-th/9312004v1 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. C. Meusburger and B. J. Schroers, “Phase space structure of Chern–Simons theory with a non-standard puncture,” Nucl. Phys. B, 738, 425–456 (2006); arXiv:hep-th/0505143v1 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. T. T. Wu and C. N. Yang, “Concept of nonintegrable phase factors and global formulation of gauge fields,” Phys. Rev. D, 12, 3845–3857 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Alexandrov and D. Vassilevich, “Area spectrum in Lorentz covariant loop gravity,” Phys. Rev. D, 64, 044023 (2001);arXiv:gr-qc/0103105v3 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Alexandrov and Z. Kádár, “Timelike surfaces in Lorentz covariant loop gravity and spin foam models,” Class. Q. Grav., 22, 3491–3509 (2005); arXiv:gr-qc/0501093v2 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. V. A. Berezin, A. M. Boyarsky, and A. Yu. Neronov, “Quantum geometrodynamics for black holes and wormholes,” Phys. Rev. D, 57, 1118–1128 (1998); arXiv:gr-qc/9708060v1 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  21. V. Berezin, “Towards a theory of quantum black holes,” Internat. J. Modern Phys. A, 17, 979–988 (2002); arXiv:gr-qc/0112022v1 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Starodubtsev.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 3, pp. 511–518, March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starodubtsev, A.N. New approach to calculating the spectrum of a quantum space–time. Theor Math Phys 190, 439–445 (2017). https://doi.org/10.1134/S0040577917030138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917030138

Keywords

Navigation