Skip to main content
Log in

Properties of Shape-Invariant Tridiagonal Hamiltonians

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

As is known, a nonnegative-definite Hamiltonian H that has a tridiagonal matrix representation in a basis set allows defining forward (and backward) shift operators that can be used to determine the matrix representation of the supersymmetric partner Hamiltonian H(+) in the same basis. We show that if the Hamiltonian is also shape-invariant, then the matrix elements of the Hamiltonian are related such that the energy spectrum is known in terms of these elements. It is also possible to determine the matrix elements of the hierarchy of supersymmetric partner Hamiltonians. Moreover, we derive the coherent states associated with this type of Hamiltonian and illustrate our results with examples from well-studied shape-invariant Hamiltonians that also have a tridiagonal matrix representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Gendenshtein, “Derivation of exact spectra of the Schrödinger equation by means of supersymmetry,” Soviet JETP Lett., 38, 356–359 (1983).

    ADS  Google Scholar 

  2. R. Dutt, A. Khare, and U. P. Sukhatme, “Supersymmetry, shape invariance, and exactly solvable potentials,” Amer. J. Phys., 56, 163–168 (1988).

    Article  ADS  Google Scholar 

  3. A. A. Andrianov, N. V. Borisov, M. V. Ioffe, and M. I. Eides, “Supersymmetric mechanics: A new look at the equivalence of quantum systems,” Theor. Math. Phys., 61, 965–972 (1984).

    Article  MathSciNet  Google Scholar 

  4. A. A. Andrianov, N. V. Borisov, and M. V. Ioffe, “The factorization method and quantum systems with equivalent energy spectra,” Phys. Lett. A, 105, 19–22 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  5. F. Cooper, A. Khare, and U. P. Sukhatme, “Supersymmetry and quantum mechanics,” Phys. Rep., 251, 267–385 (1995); arXiv:hep-th/9405029v2 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  6. W. H. Miller Jr., “Lie theory and difference equations: I,” J. Math. Anal. Appl., 28, 383–399 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  7. V. Spiridonov, L. Vinet, and A. Zhedanov, “Difference Schrödinger operators with linear and exponential discrete spectra,” Lett. Math. Phys., 29, 63–73 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Cooper, A. Khare, and U. P. Sukhtame, Supersymmetry in Quantum Mechanics, World Scientific, Singapore (2001).

    Book  Google Scholar 

  9. M. S. Swanson, A Concise Introduction to Quantum Mechanics, Morgan and Claypool, San Rafael, Calif. (2018).

    Book  Google Scholar 

  10. H. A. Yamani and Z. Mouayn, “Supersymmetry of tridiagonal Hamiltonians,” J. Phys. A: Math. Theor., 47, 265203 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  11. H. A. Yamani and Z. Mouayn, “Supersymmetry of the Morse oscillator,” Rep. Math. Phys., 78, 281–294 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. E. A. van Dooren, “Spectral properties of birth-death polynomials,” J. Comput. Appl. Math., 284, 251–258 (2015).

    Article  MathSciNet  Google Scholar 

  13. J. R. Klauder and B.-S. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics, World Scientific, Singapore (1985).

    Book  Google Scholar 

  14. H. Bateman and A. Erdelyi, Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York (1954).

    Google Scholar 

  15. A. D. Alhaidari, “An extended class of L2-series solutions of the wave equation,” Ann. Phys., 317, 152–174 (2005); arXiv:quant-ph/0409002v1 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Grundlehren Math. Wiss., Vol. 52), Springer, Berlin (1966).

    Google Scholar 

Download references

Acknowledgments

The authors thank a referee for the valuable comments and suggestions that improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. A. Yamani or Z. Mouayn.

Additional information

Conflicts of interest

The authors declare no conflicts of interest.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 203, No. 3, pp. 380–400, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamani, H.A., Mouayn, Z. Properties of Shape-Invariant Tridiagonal Hamiltonians. Theor Math Phys 203, 761–779 (2020). https://doi.org/10.1134/S0040577920060057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920060057

Keywords

Navigation