Skip to main content
Log in

Hitchin Systems on Hyperelliptic Curves

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We describe a class of spectral curves and find explicit formulas for the Darboux coordinates of Hitchin systems corresponding to classical simple groups on hyperelliptic curves. We consider in detail the systems with rank \(2\) groups on genus \(2\) curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. V. I. Arnold, Mathematical Methods of Classical Mechanics, 3rd ed. (Nauka, Moscow, 1989). Engl. transl.: Mathematical Methods of Classical Mechanics (Springer, New York, 1989), 2nd ed., Grad. Texts Math. 60.

    Book  Google Scholar 

  2. O. Babelon and M. Talon, “Riemann surfaces, separation of variables and classical and quantum integrability,” Phys. Lett. A 312 (1–2), 71–77 (2003); arXiv: hep-th/0209071.

    Article  MathSciNet  Google Scholar 

  3. P. I. Borisova, “Separation of variables for the type \(D_l\) Hitchin systems on a hyperelliptic curve,” Usp. Mat. Nauk (in press); arXiv: 1902.07700 [math-ph].

    Google Scholar 

  4. R. Donagi and E. Witten, “Supersymmetric Yang–Mills theory and integrable systems,” Nucl. Phys. B 460 (2), 299–334 (1996); arXiv: hep-th/9510101.

    Article  MathSciNet  Google Scholar 

  5. B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “Integrable systems. I,” in Dynamical Systems IV: Symplectic Geometry and Its Applications, Ed. by V. I. Arnold and S. P. Novikov (Springer, Berlin, 1990), Encycl. Math. Sci. 4, pp. 173–280.

    Google Scholar 

  6. J. D. Fay, Theta Functions on Riemann Surfaces (Springer, Berlin, 1973), Lect. Notes Math. 352.

    Book  Google Scholar 

  7. K. Gawȩdzki and P. Tran-Ngoc-Bich, “Hitchin systems at low genera,” J. Math. Phys. 41 (7), 4695–4712 (2000); arXiv: hep-th/9803101.

    Article  MathSciNet  Google Scholar 

  8. B. van Geemen and E. Previato, “On the Hitchin system,” Duke Math. J. 85 (3), 659–683 (1996); arXiv: alg-geom/9410015.

    Article  MathSciNet  Google Scholar 

  9. A. Gorsky, N. Nekrasov, and V. Rubtsov, “Hilbert schemes, separated variables, and \(D\)-branes,” Commun. Math. Phys. 222 (2), 299–318 (2001).

    Article  MathSciNet  Google Scholar 

  10. N. Hitchin, “Stable bundles and integrable systems,” Duke Math. J. 54 (1), 91–114 (1987).

    Article  MathSciNet  Google Scholar 

  11. J. C. Hurtubise, “Integrable systems and algebraic surfaces,” Duke. Math. J. 83 (1), 19–50 (1996).

    Article  MathSciNet  Google Scholar 

  12. I. Krichever, “Vector bundles and Lax equations on algebraic curves,” Commun. Math. Phys. 229 (2), 229–269 (2002).

    Article  MathSciNet  Google Scholar 

  13. I. M. Krichever and O. K. Sheinman, “Lax operator algebras,” Funct. Anal. Appl. 41 (4), 284–294 (2007) [transl. from Funkts. Anal. Prilozh. 41 (4), 46–59 (2007)].

    Article  MathSciNet  Google Scholar 

  14. O. K. Sheinman, Current Algebras on Riemann Surfaces: New Results and Applications (W. de Gruyter, Berlin, 2012), De Gruyter Expo. Math. 58.

    Book  Google Scholar 

  15. O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras,” Theor. Math. Phys. 185 (3), 1816–1831 (2015) [transl. from Teor. Mat. Fiz. 185 (3), 527–544 (2015)].

    Article  MathSciNet  Google Scholar 

  16. O. K. Sheinman, “Lax operator algebras and integrable systems,” Russ. Math. Surv. 71 (1), 109–156 (2016) [transl. from Usp. Mat. Nauk 71 (1), 117–168 (2016)].

    Article  MathSciNet  Google Scholar 

  17. O. K. Sheinman, “Some reductions of rank 2 and genera 2 and 3 Hitchin systems,” arXiv: 1709.06803 [math-ph].

  18. O. K. Sheinman, “Certain reductions of Hitchin systems of rank 2 and genera 2 and 3,” Dokl. Math. 97 (2), 144–146 (2018) [transl. from Dokl. Akad. Nauk 479 (3), 254–256 (2018)].

    Article  MathSciNet  Google Scholar 

  19. O. K. Sheinman, “Integrable systems of algebraic origin and separation of variables,” Funct. Anal. Appl. 52 (4), 316–320 (2018) [transl. from Funkts. Anal. Prilozh. 52 (4), 94–98 (2018)].

    Article  MathSciNet  Google Scholar 

  20. O. K. Sheinman, “Spectral curves of the hyperelliptic Hitchin systems,” Funct. Anal. Appl. 53 (4), 291–303 (2019) [transl. from Funkts. Anal. Prilozh. 53 (4), 63–78 (2019)].

    Article  MathSciNet  Google Scholar 

  21. V. V. Shokurov, “Prym varieties: Theory and applications,” Math. USSR, Izv. 23 (1), 83–147 (1984) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 47 (4), 785–855 (1983)].

    Article  Google Scholar 

  22. E. K. Sklyanin, “Separation of variables: New trends,” Prog. Theor. Phys. Suppl. 118, 35–60 (1995); arXiv: solv-int/9504001.

    Article  MathSciNet  Google Scholar 

  23. D. Talalaev, “Riemann bilinear form and Poisson structure in Hitchin-type systems,” arXiv: hep-th/0304099.

Download references

Acknowledgments

The authors are grateful to I. A. Taimanov for the discussion of Prymians of singular curves, although this question turned out to be beyond the scope of the final text. Among the works that significantly influenced the present study, we feel obliged to mention [10, 12, 8].

Funding

The work of the second author was supported by the Russian Foundation for Basic Research (project no. 20-01-00157) and by the RAS Program “Nonlinear Dynamics: Fundamental Problems and Applications.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Borisova.

Additional information

Dedicated to A. G. Sergeev on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, P.I., Sheinman, O.K. Hitchin Systems on Hyperelliptic Curves. Proc. Steklov Inst. Math. 311, 22–35 (2020). https://doi.org/10.1134/S0081543820060036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820060036

Navigation