Skip to main content
Log in

Gauge gravitation theory in Riemann-Cartan space-time and gravitational interaction

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The place and physical significance of gauge gravitation theory in Riemann-Cartan spacetime (GTRC) in the framework of the gauge approach to gravitation is discussed. Isotropic cosmology built on the basis of GTRC with a general expression of the gravitational Lagrangian with indefinite parameters is considered. The most important physical consequences connected with a change of the gravitational interaction, with possible existence of limiting energy density and gravitational repulsion at extreme conditions, and also with the vacuum repulsion effect are discussed. A solution of the problem of cosmological singularity and the dark energy problem as a result of the change of the gravitational interaction is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Novello and S. A. Perez Bergliaffa, Phys. Rept. 463, 127 (2008); ArXiv: 0802. 1634.

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Nojiri and S. D. Odintsov, Phys. Rept. 505, 59 (2011); ArXiv: 1011. 0544.

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Capozziello and M. De Laurentis, Phys. Rept. 509, 167 (2011); ArXiv: 1108. 6266.

    Article  ADS  Google Scholar 

  4. A. V. Minkevich, Acta Phys. Polon. B 40, 229 (2009); ArXiv: 0808. 0239.

    ADS  MathSciNet  Google Scholar 

  5. A. V. Minkevich, Vestci Akad. Nauk BSSR, Ser. Fiz.-Mat., No. 4, 117 (1966).

    Google Scholar 

  6. R. Utiyama and T. Fukuyama, Progr. Theor. Phys. 45, 612 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  7. K. Hayashi and T. Nakano, Progr. Theor. Phys. 38, 491 (1967).

    Article  ADS  Google Scholar 

  8. A. V. Minkevich and V. I. Kudin, Acta Phys. Polon. B 5, 335 (1974).

    MathSciNet  Google Scholar 

  9. R. Utiyama, Phys. Rev. 101, 1597 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  10. T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. M. Brodskii, D. D. Ivanenko, and G. A. Sokolik, JETP 41, 1307 (1961).

    MathSciNet  Google Scholar 

  12. A. Trautman, in Encyclopedia of Mathematical Physics, Vol. 2, Ed. by J.-P. Francoise et al. (Elsevier, Oxford, 2006), pp. 189–195.

    Google Scholar 

  13. V. N. Ponomariev, A. O. Barvinsky, and Yu. N. Obukhov, GeometrodynamicalMethods and the Gauge Approach to the Theory of Gravitation (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  14. D. D. Ivanenko, P. I. Pronin, and G. A. Sardanashvili, Gauge Theory of Gravity (Mos. Gos. Univ., Moscow, 1985).

    Google Scholar 

  15. D. W. Sciama, in Recent Developments in General Relativity, Festschrift for Infeld (Pergamon Press, Oxford, 1962), pp. 415–439.

    Google Scholar 

  16. F. W. Hehl, P. von der Heyde, G. D. Kerlik, and J. M. Nester, Rev. Mod. Phys. 48, 393 (1976).

    Article  ADS  Google Scholar 

  17. M. Blagojević, Gravitation and Gauge Symmetries (IOP, Bristol, 2002).

    Book  MATH  Google Scholar 

  18. K. Hayashi and T. Shirafuji, Prog. Theor. Phys. 64, 866–896, 1435–1452, 2222–2241 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. V. Minkevich, Space, Time and Fundamental Interactions, No. 1, 62 (2012) [in Russsian].

    Google Scholar 

  20. A. V. Minkevich, Phys. Lett. A 80 (4), 232 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. V. Minkevich, Gravitation Cosmology 12, 11 (2006); ArXiv: g-qc/0506140.

    ADS  Google Scholar 

  22. S. Weinberg, Gravitation and Cosmology (Moscow, Mir, 1975).

    Google Scholar 

  23. V. I. Kudin, A. V. Minkevich, and F. I. Fedorov, “About space-time symmetries in gauge theory of gravity,” VINITI, No. 3794-79 (Minsk, 1979).

    Google Scholar 

  24. M. Tsamparlis, Phys. Lett. A 75, 27 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  25. A. V. Minkevich, A. S. Garkun, and V. I. Kudin, Class. Quantum Grav. 24, 5835 (2007); ArXiv: 0706. 1157 [gr-qc].

    Article  ADS  MathSciNet  Google Scholar 

  26. A. V. Minkevich, Modern Phys. Lett. A 26 (4), 259 (2011); Arxiv: 1002.0538 [gr-qc].

    Article  ADS  Google Scholar 

  27. A. V. Minkevich, in Proceedings of International Seminar “Nonlinear Fields in Gravitation Theory and Cosmology” (Kazan, 2013), pp. 69–73; International School on Gravitation and Cosmology GRACOS-2014, Proceedings (Kazan, 2014), pp. 25–46; http://www.rusgrav15.kpfu.ru.

    Google Scholar 

  28. A. S. Garkun, V. I. Kudin, and A. V. Minkevich, JCAP 12, 027 (2014); ArXiv: 1410.0460 [gr-qc].

    Article  ADS  Google Scholar 

  29. A. V. Minkevich, JETP Lett. 94 (12), 831 (2011).

    Article  ADS  Google Scholar 

  30. A. V. Minkevich, Modern Phys. Lett. A 28 (21), 1350090 (2013); ArXiv: 1309. 6075 [gr-qc].

    Article  ADS  MathSciNet  Google Scholar 

  31. A. V. Minkevich and A. S. Garkun, Class. Quantum Grav. 23, 4237 (2006); ArXiv: 0512130 [gr-qc].

    Article  ADS  MathSciNet  Google Scholar 

  32. A. V. Minkevich, A. S. Garkun, and V. I. Kudin, JCAP 03, 40 (2013); Arxiv: 1302.2578 [gr-qc].

    Article  ADS  MathSciNet  Google Scholar 

  33. A. V. Minkevich, A. S. Garkun, V. I. Kudin, and Yu. G. Vasilevski, 15 RussianGravitational Conference, Abstracts Reports (Kazan), pp. 51–52.

  34. A. V. Minkevich, Phys. Lett. B 678, 423 (2009); Arxiv: 0902.2860 [gr-qc].

    Article  ADS  Google Scholar 

  35. K. F. Shie, J. M. Nester, and H. J. Yo, Phys. Rev. D 78, 023522 (2008); H. J. Yo and J. M. Nester, Mod. Phys. Lett. A 22, 2057 (2007); Hsin Chen, Fei-Hung Ho, J. M. Nester, and Chih HungWang, JCAP 0910, 027 (2009); Xin-zhou Li, Chang-bo Sun, and Ping Xi, Phys. Rev. D 79, 027301 (2009); Xi-chen Ao, Xinzhou Li, and Ping Xi, Phys. Lett. B 694, 186 (2010).

    Article  ADS  Google Scholar 

  36. A. V. Minkevich, A. S. Garkun, and V. I. Kudin, Comment on “Torsion Cosmology and Accelerating Universe,” arXiv: 0811.1430.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Minkevich.

Additional information

This issue of the journal is dedicated to the centenary of Prof. K.P. Staniukovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minkevich, A.V. Gauge gravitation theory in Riemann-Cartan space-time and gravitational interaction. Gravit. Cosmol. 22, 148–158 (2016). https://doi.org/10.1134/S0202289316020109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289316020109

Keywords

Navigation