Skip to main content
Log in

Electromagnetic Origin of Particle Masses and Gravity: a Relativistic Theory

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The theory of direct particle interaction proposed in our previous works is further developed. In this theory, the electromagnetic interaction is primary whereas the emergence of particle masses and gravity are its consequences. The equation of motion is generalized to arbitrary velocities of the selected particle (rather than small ones). With the introduction of an effective metric, a correspondence between this theory and General Relativity (GR) is established. It is shown that the theory reproduces GR effects associated with the Schwarzschild and Friedmann metrics: planetary perihelion shift, light deflection by a massive body, gravitational redshift and cosmological redshift. However, a general correspondence with GR is achieved under some restrictions (at sufficiently low speeds, small components of the gravitational potential, but sufficiently large accelerations). In the theory, there is a parameter with the dimension of acceleration, approximately equal to \(7\times 10^{-10}\) m/s\({}^{2}\) and close to the parameter \(a_{0}\) in modified Newtonian dynamics (MOND). Perhaps our theory can serve as a theoretical basis for MOND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. One means the three-dimensional distance in Euclidean space between the points of emission and absorption of light.

REFERENCES

  1. M. Yu. Romashka, ‘‘Electromagnetic origin of particle masses and gravitation’’, Grav. Cosmol. 23, 119–127 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Yu. Romashka, ‘‘The Theory of Direct Particle Interaction and a Stationary Cosmological Model’’, Grav. Cosmol. 25, 138–147 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Tetrode, ‘‘Uber der Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik.’’ Z. Phys. 10, 316–328 (1922). English translation: H. Tetrode, ‘‘On the causal connection of the world. An extension of classical dynamics.’’ Available at: http://mpseevinck.ruhosting.nl/seevinck/Translation_Tetrode.pdf

    Article  ADS  Google Scholar 

  4. J. A. Wheeler and R. P. Feynman, ‘‘Interaction with the absorber as the mechanism of radiation.’’ Rev. Mod. Phys. 17, 157–181 (1945).

    Article  ADS  Google Scholar 

  5. J. A. Wheeler and R. P. Feynman, ‘‘Classical electrodynamics in terms of direct interparticle action.’’ Rev. Mod. Phys. 24, 425–433 (1949).

    Article  ADS  Google Scholar 

  6. R. H. Dicke, ‘‘Gravitation without a principle of equivalence.’’ Rev. Mod. Phys. 29, 363–376 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  7. P. A. M. Dirac, ‘‘Classical theory of radiating electrons.’’ Proc. Roy. Soc. A 167, 148–169 (1938).

    ADS  MATH  Google Scholar 

  8. M. Milgrom, ‘‘A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis.’’ Astrophys. J. 270, 365–370 (1983).

    Article  ADS  Google Scholar 

  9. M. Milgrom, ‘‘A modification of the Newtonian dynamics: Implications for galaxies.’’ Astrophys. J. 270, 371–383 (1983).

    Article  ADS  Google Scholar 

  10. M. Milgrom, ‘‘A modification of the Newtonian dynamics: Implications for galaxy systems.’’ Astrophys. J. 270, 384–389 (1983).

    Article  ADS  Google Scholar 

  11. M. Milgrom, ‘‘MOND-theoretical aspects.’’ ArXiv: 0207231v2 (2002).

  12. J. D. Bekenstein and M. Milgrom, ‘‘Does the missing mass problem signal the breakdown of Newtonian gravity?’’ Astrophys. J. 286, 7–14 (1984).

    Article  ADS  Google Scholar 

  13. B. Famaey and S. McGaugh, ‘‘Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions.’’ ArXiv: 1112.3960v2 (2012).

  14. J. D. Bekenstein, ‘‘The modified Newtonian dynamics - MOND and its implications for new physics.’’ ArXiv: 0701848v2 (2007).

  15. Ya. I. Granovsky and A. A. Pantyushin, ‘‘On a relativistic theory of gravitation.’’ Investiya AN of Kazakh SSR, Math. Phys., No. 2, 65–69 (1965).

  16. A. A. Pantyushin, ‘‘Theory of direct gravitational interaction of bodies’’ in Gravitation and Relativity Theory, vol. 6, Ed. by A. Z. Petrov (Kazan, 1969), pp. 30–40.

    Google Scholar 

  17. V. I. Zhdanov and K. A. Pyragas, ‘‘On the two-body problem in the theory of direct gravitational interaction, I, II.’’ Acta Phys. Pol. B 3, 585–619 (1972).

    Google Scholar 

  18. K. A. Pyragas, V. I. Zhdanov, A. N. Alexandrov, Yu. N. Kudrya, and L. E. Pyragas, Qualitative and analytic methods in relativistic dynamics (Energoatomizdat, Moscow, 1995) [in Russian].

    Google Scholar 

  19. A. Yu. Turygin, ‘‘Theory of a direct interparticle gravitational interaction against a Riemannian background.’’ Izvestiya Vysschikh Uchebnykh Zavedenii, Fizika, No. 6, 82–88 (1981).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Romashka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romashka, M.Y. Electromagnetic Origin of Particle Masses and Gravity: a Relativistic Theory. Gravit. Cosmol. 26, 61–69 (2020). https://doi.org/10.1134/S0202289320010120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320010120

Navigation