Skip to main content
Log in

Metabolite transport across the peribacteroid membrane during broad bean development

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

A temporal pattern of the peribacteroid membrane (PBM) transport function was studied. Spectrophotometric recording was used for establishing the effect of carbon-and nitrogen-containing substrates (malate, succinate, and glutamate) on the acidification of the peribacteroid space and the intensity of light scattering in the symbiosome suspension from broad bean (Vicia faba L.) root nodules of different age. At the early stages of nodule formation and functioning, PBM is permeable not only for malate and succinate, but also for glutamate, and this permeability fully provides for the active bacteroid division and the nitrogenase complex synthesis in the bacteroids at the expense of the carbon-and nitrogen-containing substrates. Mature nodules are characterized by the greatest nitrogen-fixing activity. In these nodules, PBM is selectively permeable for malate and succinate, but constitutes a barrier for glutamate. Thereby, mutually beneficial relations between the symbiotic partners are achieved. In senescent nodules, a rearrangement of symbiotic interactions is directed toward a minimization of both carbon and nitrogen metabolite consumption by the bacteroids. It is concluded that, in the course of the development of the legume-rhizobia symbiosis, the PBM transport function is changed. This function determines a qualitatively different pattern of symbiotic partner interactions in the following sequence: parasitism-mutualism-commensalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AO:

acridine orange

PBM:

peribacteroid membrane

PBS:

peribacteroid space

References

  1. Izmailov, S.F., Physiology of Symbiotic Relations in Legume Nodules: Biogenesis and Functions of the Peribacteroid Membrane, Russ. J. Plant Physiol., 1996, vol. 43, pp. 672–687.

    CAS  Google Scholar 

  2. Udvardi, M.K. and Day, D.A., Metabolite Transport across Symbiotic Membranes of Legume Nodules, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, pp. 493–523.

    Article  PubMed  CAS  Google Scholar 

  3. Parniske, M., Intracellular Accommodation of Microbes by Plants: A Common Developmental Program for Symbiosis and Disease? Curr. Opin. Plant Biol., 2000, vol. 3, pp. 320–328.

    Article  PubMed  CAS  Google Scholar 

  4. Whitehead, L.F. and Day, D.A., The Peribacteroid Membrane, Physiol. Plant., 1997, vol. 100, pp. 30–44.

    Article  CAS  Google Scholar 

  5. Lodwig, E. and Poole, P., Metabolism of Rhyzobium Bacteroids, Crit. Rev. Plant Sci., 2003, vol. 22, pp. 37–78.

    CAS  Google Scholar 

  6. Izmailov, S.F., Calcium-Based Interactions of Symbiotic Partners in Legumes: Role of Peribacteroid Membrane, Russ. J. Plant Physiol., 2003, vol. 50, pp. 553–566.

    Article  CAS  Google Scholar 

  7. Rin’kis, G.Ya., Optimizatsiya mineral’nogo pitaniya rastenii (Optimization of Plant Mineral Nutrition), Riga: Zinatne, 1972.

    Google Scholar 

  8. Andreeva, I.N., Svaradzh, K., Chetverikov, A.G., and Kozlova, G.I., Changes of the Ultrastructure, Nitrogen Fixation Activity of Root Nodules, and the Photosynthetic Apparatus in Soybean during Prolonged Darkness, Fiziol. Rast. (Moscow), 1986, vol. 33, pp. 252–263 (Sov. Plant Physiol., Engl. Transl.).

    CAS  Google Scholar 

  9. Andreev, I., Dubrovo, P., Krylova, V., Andreeva, I., Sorokin, E., and Izmailov, S., Characterization of ATP-Hydrolyzing and ATP-Driven Proton-Translocating Activities Associated with the Peribacteroid Membrane from Root Nodules of Lupinus luteus L., J. Plant Physiol., 1997, vol. 151, pp. 563–569.

    CAS  Google Scholar 

  10. Palmgren, M.G., Acridine Orange as a Probe for Measuring pH Gradients across Membranes: Mechanism and Limitations, Anal. Biochem., 1991, vol. 192, pp. 316–321.

    Article  PubMed  CAS  Google Scholar 

  11. Appel, H.-J. and Bersh, B., Oxonol VI as an Optical Indicator for Membrane Potentials in Lipid Vesicles, Biochim. Biophys. Acta, 1987, vol. 903, pp. 480–494.

    Article  Google Scholar 

  12. Dubrovo, P.N., Krylova, V.V., Livanova, G.I., Zhiznevskaya, G.Ya., and Izmailov, S.F., Properties of ATPases of the Peribacteroid Membrane from Root Nodules of Lupinus luteus, Fiziol. Rast. (Moscow), 1992, vol. 39, pp. 503–513 (Sov. Plant Physiol., Engl. Transl.).

    CAS  Google Scholar 

  13. Rosendahl, L., Dilworth, M.J., and Glenn, A.R., Exchange of Metabolites across the Peribacteroid Membrane in Pea Root Nodules, J. Plant Physiol., 1992, vol. 139, pp. 635–638.

    CAS  Google Scholar 

  14. Bradford, M.M., Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  15. Provorov, N.A., Theory of Symbiosis: Basics of Evolutionary Genetics, Zh. Obshch. Biol., 2001, vol. 62, pp. 472–495.

    PubMed  CAS  Google Scholar 

  16. Puppo, A., Groten, K., Bastian, F., Carzaniga, R., Soussi, M., Lucas, M., Felipe, M., Harrison, J., Vanacker, H., and Foyer, C., Legume Nodule Senescence: Roles for Redox and Hormone Signaling in the Orchestration of the Natural Aging Process, New Phytol., 2005, vol. 165, pp. 683–701.

    Article  PubMed  CAS  Google Scholar 

  17. Coruzzi, G. and Zhou, L., Carbon and Nitrogen Sensing and Signaling in Plants: Emerging ‘Matrix Effects,’ Curr. Opin. Plant Biol., 2001, vol. 4, pp. 247–253.

    Article  PubMed  CAS  Google Scholar 

  18. Demidchik, V., Essah, P., and Tester, M., Glutamate Activates Cation Currents in the Plasma Membrane of Arabidopsis Root Cells, Planta, 2004, vol. 219, pp. 167–175.

    Article  PubMed  CAS  Google Scholar 

  19. Day, D.A., Poole, P.S., Tyerman, S.D., and Rosendahl, L., Ammonia and Amino Acid Transport across Symbiotic Membranes in Nitrogen-Fixing Legume Nodules, Cell Mol. Life Sci., 2001, vol. 58, pp. 61–71.

    Article  PubMed  CAS  Google Scholar 

  20. Ouyang, L., Whelan, J., Weaver, C.D., Roberts, D.M., and Day, D.A., Protein Phosphorylation Stimulates the Rate of Malate Uptake across the Peribacteroid Membrane of Soybean Nodules, FEBS Lett., 1991, vol. 293, pp. 188–190.

    Article  PubMed  CAS  Google Scholar 

  21. Mulder, L., Hogg, B., Bersoult, A., and Cullimore, J., Integration of Signalling Pathways in the Establishment of the Legume-Rhizobia Symbiosis, Physiol. Plant., 2005, vol. 123, pp. 207–218.

    Article  CAS  Google Scholar 

  22. Peoples, M.B. and Dalling, M.J., The Interplay between Proteolysis and Amino Acid Metabolism during Senescence and Nitrogen Reallocation, Senescence and Aging in Plants, Nooden, L.D. and Leopold, A.C., Eds., New York: Academic, 1988, pp. 181–217.

    Google Scholar 

  23. Brewin, N.J., Development of the Legume Root Nodule, Annu. Rev. Cell Biol., 1991, vol. 7, pp. 191–226.

    Article  PubMed  CAS  Google Scholar 

  24. Mellor, R.B., Bacteroids in the Rhizobium-Legume Symbiosis Inhabit a Plant Internal Lytic Compartment: Implications for Other Microbial Endosymbiosis, J. Exp. Bot., 1989, vol. 40, pp. 831–839.

    Article  CAS  Google Scholar 

  25. Andreeva, I.N., Kozharinova, G.M., and Izmailov, S.F., Senescence of Legume Nodules, Russ. J. Plant Physiol., 1998, vol. 45, pp. 101–112.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Krylova, P.N. Dubrovo, S.F. Izmailov, 2007, published in Fiziologiya Rastenii, 2007, Vol. 54, No. 2, pp. 209–216.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krylova, V.V., Dubrovo, P.N. & Izmailov, S.F. Metabolite transport across the peribacteroid membrane during broad bean development. Russ J Plant Physiol 54, 184–190 (2007). https://doi.org/10.1134/S1021443707020045

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707020045

Key words

Navigation