Skip to main content
Log in

The diversity of chloroplast microsatellite loci in Siberian fir (Abies sibirica Ledeb.) and two Far East fir species A. nephrolepis (Trautv.) Maxim. and A. sachalinensis Fr. Schmidt

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The genetic variability in 29 populations of Abies sibirica, three of A. nephrolepis, and seven of A. sachalinensis was studied using SSR markers of chloroplast DNA. Among ten primer pairs examined, pairs Pt71936 and Pt30204 gave stable amplification and polymorphic products (with nine and fourteen alleles, respectively). Totally, 70 haplotypes were found, 43 in A. sibirica, 49 in A. sachalinensis, and 31 in A. nephrolepis. The highest values of genetic diversity parameters were observed in A. sachalinensis, and the lowest in A. sibirica. The Siberian fir differs from Far East species by the uneven multimodal frequency distributions of allele length in both cpSSR loci, which is explained by the presence of few separated from each other dominating haplotypes. This fact indicates that A. sibirica and the Far East species have different demographic histories. In A. sibirica, the proportion of diversity between populations in the total genetic diversity, calculated taking into account the differences between haplotypes (R ST) was 8.34 and 4.42% without accounting for haplotypes differences (R ST > G ST, P = 0.01). The pairwise G ST correlate significantly with geographic distances between the populations A. sibirica and with genetic distances D calculated from allozyme data. No such correlations were found with the R ST parameter. The results of cpSSR variability analysis strongly support the conclusions inferred from allozyme data: several geographic groups of comparatively genetically close populations are identified, which may be explained by the history of colonization of the present-day Siberian fir range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neale, D.B. and Sederoff, R.R., Paternal Inheritance of Chloroplast DNA and Maternal Inheritance of Mitochondrial DNA in Loblolly Pine, Theor. Appl. Genet., 1989, vol. 77, pp. 212–216.

    Article  Google Scholar 

  2. Vendramin, G.G. and Ziegenhagen, B., Characterization and Inheritance of Polymorphic Plastid Microsatellites in Abies, Genome, 1997, vol. 40, no. 6, pp. 857–864.

    Article  PubMed  CAS  Google Scholar 

  3. Birky, C.W., Evolution and Variation in Plant Chloroplast and Mitochondrial Genomes, Plant Evolutionary Biology, Gottlieb, L. and Jain, S., Eds., London: Chapman and Hall, 1988, pp. 23–53.

    Google Scholar 

  4. Morgante, M., Felice, N., and Vendramin, G.G., Analysis of Hypervariable Chloroplast Microsatellite in Pinus halepensis Reveal a Dramatic Bottleneck, Molecular Tools for Screening Biodiversity: Plants and Animals, Karp, A., Isaac, P.G., and Ingram, D.S., Eds., London: Chapman and Hall, 1997, pp. 402–412.

    Google Scholar 

  5. Provan, J., Powell, W., and Hollingsworth, P.M., Chloroplast Microsatellites: New Tools for Studies in Plant Ecology and Evolution, Trends Ecol. Evol., 2001, vol. 16, pp. 142–147.

    Article  PubMed  Google Scholar 

  6. Powell, W., Morgante, M., McDevitt, R., et al., Polymorphic Simple Sequence Repeat Regions in Chloroplast Genomes: Application to the Population Genetics of Pines, Proc. Natl Acad. Sci. USA, 1995, vol. 92, pp. 7759–7763.

    Article  PubMed  CAS  Google Scholar 

  7. Vendramin, G.G., Lelli, L., Rossi, P., and Morgante, M., A Set of Primers for the Amplification of 20 Chloroplast Microsatellites in Pinaceae, Mol. Ecol., 1996, vol. 5, pp. 111–114.

    Article  Google Scholar 

  8. Echt, C.S., DeVerno, L.L., Anzidei, M., and Vendramin, G.G., Chloroplast Microsatellites Reveal Population Genetic Diversity in Red Pine, Pinus resinosa Ait., Mol. Ecol., 1998, vol. 7, pp. 307–316.

    Article  Google Scholar 

  9. Provan, J., Soranzo, N., Wilson, N.J., et al., Gene-Pool Variation in Caledonian and European Scots Pine (Pinus sylvestris L.) Revealed by Chloroplast Simple-Sequence Repeats, Proc. R. Soc. London, 1990, vol. 265, pp. 1697–1705.

    Article  Google Scholar 

  10. Vendramin, G.G., Degen, B., Petit, R.G., et al., High Level of Variation at Abies alba Chloroplast Microsatellite Loci in Europe, Mol. Ecol., 1999, vol. 8, pp. 1117–1126.

    Article  Google Scholar 

  11. Clark, C.M., Wentworth. T.R., and O’Malley, D.M., Genetic Discontinuity Revealed by Chloroplast Microsatellites in Eastern North American Abies (Pinaceae), Amer. J. Botany, 2000, vol. 87, no. 6, pp. 774–782.

    Article  Google Scholar 

  12. Vendramin, G.G., Anzidei, M., Madaghiele, A., et al., Chloroplast Microsatellite Analysis Reveals the Presence of Population Subdivision in Norway Spruce (Picea abies K.), Genome, 2000, vol. 43, pp. 68–78.

    Article  PubMed  CAS  Google Scholar 

  13. Parducci, L., Szmidt, A.E., Madaghiele, A., et al., Genetic Variation at Chloroplast Microsatellites (cpSSRs) in Abies nebrodensis (Lojac.) Mattei and Three Neighboring Abies Species, Theor. Appl. Genet., 2001, vol. 102, pp. 733–740.

    Article  CAS  Google Scholar 

  14. Walter, R. and Epperson, B.K., Geographic Pattern of Genetic Variation in Pinus resinosa: Area of Greatest Diversity Is Not the Origin of Postglacial Populations, Mol. Ecol., 2001, vol. 10, pp. 103–111.

    Article  PubMed  CAS  Google Scholar 

  15. Richardson, B.A., Brunsfeld, S.J., and Klopfenstein, N.B., DNA from Bird-Dispersed Seed and Wind-Disseminated Pollen Provides Insights into Postglacial Colonization and Population Genetic Structure of Eastern Siberian Pine (Pinus albicaulis), Mol. Ecol., 2002, vol. 11, pp. 215–227.

    Article  PubMed  CAS  Google Scholar 

  16. Semerikov, V. and Lascoux, M., Nuclear and Cytoplasmic Variation within and between Eurasian Larix (Pinaceae) Species, Amer. J. Botany, 2003, vol. 90, no. 8, pp. 1113–1123.

    CAS  Google Scholar 

  17. Navascues, M., Vaxevanidou, Z., Gonzalez-Martinez, S.C., et al., Chloroplast Microsatellites Reveal Colonization and Metapopulation Dynamics in the Canary Island Pine, Mol. Ecol., 2006, vol. 15, pp. 2691–2698.

    Article  PubMed  Google Scholar 

  18. Provan, J., Soranzo, N., Wilson, N.J., et al., A Low Mutation Rate for Chloroplast Microsatellites, Genetics, 1999, vol. 153, pp. 943–947.

    PubMed  CAS  Google Scholar 

  19. Matsenko, A.E., Abies Species of the Eastern Hemisphere, in Flora i sistematika vysshikh rastenii (Flora and Systematics of Higher Plants), issue 13 of Trudy Botanicheskogo Inst. im. V.L. Komarova, Moscow: Nauka, 1964, pp. 3–103.

    Google Scholar 

  20. Krylov, G.V., Maradudin, I.I., Mikheev, N.I., and Kozakova, N.F., Pikhta (Siberian Fir), Moscow: Agropromizdat, 1986.

    Google Scholar 

  21. Semerikova, S.A. and Semerikov, V.L., Genetic Variation and Population Differentiation in Siberian Fir Abies sibirica Ledeb. Inferred from Allozyme Markers, Russ. J. Genet., 2006, vol. 42, no. 6, pp. 636–644.

    Article  CAS  Google Scholar 

  22. Semerikova, S.A., Genetic Differentiation in Siberian Fir Abies sibirica Ledeb. Population in the West Siberian Plain and Krasnoyarsk Krai, in Osob’ i populyatsiya—strategiya zhizni (Individual and Population—Life Strategy), Proc. 9th All-Russia Population Conference, Ufa, 2006, part 2, pp. 475–481.

  23. Ekart, A.K., Ecological Genetic Analysis of Siberian Fir Abies sibirica Ledeb. Population, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Krasnoyarsk: IL SO RAN, 2006.

    Google Scholar 

  24. Goncharenko, G.G. and Padutov, A.E., Genetic Structure, Taxonomic and Genetic Interrelations among Fir Species in CIS, Dokl. Akad. Nauk SSSR, 1995, vol. 342, no. 1, pp. 122–126.

    CAS  Google Scholar 

  25. Goncharenko, G.G. and Savitskii, B.P., Populyatsionno-Geneticheskie Resursy Pikhty Beloi v Belarusi (Population Genetic Resources of Silver Fir in Belarus), Gomel’: Polespechat’, 2000

    Google Scholar 

  26. Semerikova, S.A., Allozyme Variation and the Genetic Relations of Sakhalin and Eastern Siberian Firs, in Lesnye ekosistemy Severo-Vostochnoi Azii i ikh dinamika (Forest Ecosystems of Northeast Asia and Their Dynamics), Proc. Int. Conf., Vladivostok: Dal’nauka, 2006, pp. 238–241.

    Google Scholar 

  27. Devey, M.E., Bell, J.C., Smith, D.N., et al., A Genetic Linkage Map for Pinus radiate Based on RFLP, RAPD and Microsatellite Markers, Theor. Appl. Genet., 1996, vol. 92, pp. 673–679.

    Article  CAS  Google Scholar 

  28. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  29. Goldstein, D.B., Ruiz Linares, A., Cavalli-Sforza, L.L., and Feldman, M.W., An Evaluation of Genetic Distances for Use with Microsatellite Loci, Genetics, 1995, vol. 139, pp. 463–471.

    PubMed  CAS  Google Scholar 

  30. Weir, B.S. and Cockerham, C.C., Estimating F-Statistics for the Analysis of Population Structure, Evolution, 1984, vol. 38, pp. 1358–1370.

    Article  Google Scholar 

  31. Schneider, S., Roessli, D., and Excoffier, L., ARLEQUIN ver. 2.000: A Software for Population Genetics Data Analysis, Geneva: Univ. Geneva, 2000.

    Google Scholar 

  32. Excoffier, L., Smouse, P.E., and Quattro, J.M., Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes—Application to Human Mitochondrial DNA Restriction Data, Genetics, 1992, vol. 131, pp. 479–491.

    PubMed  CAS  Google Scholar 

  33. Pons, O. and Petit, R.J., Measuring and Testing Genetic Differentiation with Ordered versus Unordered Alleles, Genetics, 1996, vol. 144, pp. 1237–1245.

    PubMed  CAS  Google Scholar 

  34. Rohlf, E.J., Numerical Taxonomy and Multivariate Analysis System, New York: Exter Publ., 1988.

    Google Scholar 

  35. Mantel, N.A., The Detection of Disease Clustering and a Generalized Regression Approach, Cancer Res., 1967, vol. 27, pp. 209–220.

    PubMed  CAS  Google Scholar 

  36. Liepelt, S., Bialozyt, R., and Ziegenhagen, B., Wind-Dispersed Pollen Mediates Postglacial Gene Flow among Refugia, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 22, pp. 14 590–14 594.

    Article  CAS  Google Scholar 

  37. Semerikova, S.A. and Berkutenko, A.N., Genetic Variation of Kamchatka Fir Abies gracilis Kom. at Allozyme Markers and Chloroplast SSR, in Lesnye ekosistemy Severo-Vostochnoi Azii i ikh dinamika (Forest Ecosystems of Northeast Asia and Their Dynamics), Proc. Int. Conf., Vladivostok: Dalnauka, 2006, pp. 241–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Semerikov.

Additional information

Original Russian Text © S.A. Semerikova, V.L. Semerikov, 2007, published in Genetika, 2007, Vol. 43, No. 12, pp. 1637–1646.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semerikova, S.A., Semerikov, V.L. The diversity of chloroplast microsatellite loci in Siberian fir (Abies sibirica Ledeb.) and two Far East fir species A. nephrolepis (Trautv.) Maxim. and A. sachalinensis Fr. Schmidt. Russ J Genet 43, 1373–1381 (2007). https://doi.org/10.1134/S102279540712006X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279540712006X

Keywords

Navigation