Skip to main content
Log in

Homologous Robertsonian Translocations: Spectrum, Sex Ratios, and Reproductive Risks

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Robertsonian translocations/isochromosomes formed by homologous acrocentric chromosomes are rare, and consequently their epidemiology has not been well investigated. This study, based on the analysis of published data including systematic studies of patients with reproductive disorders and individual reports on carriers of homologous translocation (HT), was conducted to determine the major epidemiological characteristics of HT. 10-fold differences were found between couples with infertility and couples with miscarriages, both in the frequency of HT carriers (0.03 and 0.45‰, correspondingly) and in their proportion of the total number of robertsonian translocation carriers (0.9 and 9%, correspondingly), p < 0.005. In patients with an apparent male infertility factor, these rates are 0.21‰ and 3%. In the group of males from couples with miscarriages (although about half of them are partners of women with female factor of reproductive disorder), rates of 0.36‰ and 10.5% were observed, p < 0.05. Among all HT carriers, those with HT of chromosomes 13 and 22 are found more frequently. For carriers of HT of chromosomes 13, 14, 15 and 21, female predominance was typical with the average sex ratio (SR) of 0.36 (22♂/61♀). Among the carriers of chromosome 22 HT, there was no female predominance, SR = 1.18 (13♂/11♀) the difference with other acrocentrics is statistically significant, p < 0.05. Analysis of reports on individual cases showed that only two out of 22 male HT carriers, were tested for infertility. One of them had a cell line with unbalanced HT, and for the other patient, the researchers found no reason to link the impairment of spermatogenesis with the presence of HT. Thus, in the majority of male HT carriers, spermatogenesis was not impaired. It is suggested that the disturbance of spermatogenesis in some cases is due to gonadal mosaicism for translocation trisomy resulting from incomplete correction of the original translocation trisomy. There are some published reports on healthy offspring with an inherited a parental balanced HT and on offspring with normal karyotypes born to apparently non mosaic HT carriers. Hence, it is possible to consider the probability of having healthy offspring for HT carriers as not zero, therefore references to the algorithms for the patients’ comprehensive examination and appropriate counseling are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gardner, R.J.M. and Sutherland, G.R., Chromosome Abnormalities and Genetic Counseling, Oxford: Oxford Univ. Press, 1989, pp. 54—64.

    Google Scholar 

  2. Kovaleva N.V., Examination of rates and spectrums of Robertsonian translocations in the general population and in patients with reproductive disorders, Russ. J. Genet., 2018, vol. 54, no. 4, pp. 489—493.

    Article  CAS  Google Scholar 

  3. Kovaleva, N.V. and Shaffer, L.G., Under-ascertainment of mosaic carriers of balanced homologous acrocentric translocations and isochromosomes, Am. J. Med. Genet., 2003, vol. 121A, pp. 180—187. https://doi.org/10.1002/ajmg.a.20156

    Article  PubMed  Google Scholar 

  4. Artini, P.G., Papini, F., Ruggiero, M., et al., Genetic screening in Italian infertile couples undergoing intrauterine insemination and in vitro fertilization techniques: a multicentric study, Gynecol. Endocrinol., 2011, vol. 27, pp. 453—457. https://doi.org/10.3109/09513590.2011.579207

    Article  PubMed  Google Scholar 

  5. Clementini, E., Palka, C., Iezzi, I., et al., Prevalence of chromosomal abnormalities in 2078 infertile couples referred for assisted reproductive techniques, Hum. Reprod., 2005, vol. 20, pp. 437—442. https://doi.org/10.1093/humrep/deh626

    Article  CAS  PubMed  Google Scholar 

  6. Gada Saxena, S., Desai, K., Shawale, L., et al., Chromosomal aberrations in 2000 couples of Indian ethnicity with reproductive failure, Reprod. Biomed. Online, 2012, vol. 25, pp. 209—218. https://doi.org/10.1016/j.rbmo.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  7. Hens, L., Bonduelle, M., Liebaers, I., et al., Chromosome aberrations in 500 couples referred for in vitro fertilization or related fertility treatment, Hum. Reprod., 1988, vol. 3, pp. 451—457.

    Article  CAS  PubMed  Google Scholar 

  8. Kayed, H.F., Mansour, R.T., Aboulghar, M.A., et al., Screening for chromosomal abnormalities in 2650 infertile couples undergoing ICSI, Reprod. Biomed. Online, 2006, vol. 12, pp. 359—370.

    Article  PubMed  Google Scholar 

  9. Kumar, M., Thatai, A., and Chapadgaonkar, S.S., A retrospective cytogenetic study of chromosomal abnormalities in infertile couples of Italian origin, Pharmacia Lett., 2017, vol. 9, pp. 44—56.

    CAS  Google Scholar 

  10. Marchina, E., Imperadori, L., Speziani, M., et al., Chromosome abnormalities and Y microdeletions in infertile Italian couples referred for assisted reproductive technique, Sex. Dev., 2007, vol. 1, pp. 347—352. https://doi.org/10.1159/000111766

    Article  CAS  PubMed  Google Scholar 

  11. Mau, U.A., Backert, I.T., Kaiser, P., and Kiesel, L., Chromosomal findings in 150 couples referred for genetic counselling prior to intracytoplasmic sperm injection, Hum. Reprod., 1997, vol. 12, pp. 930—937.

    Article  CAS  PubMed  Google Scholar 

  12. Meschede, D., Lemcke, B., Exeler, J.R., et al., Chromosome abnormalities in 447 couples undergoing intracytoplasmic sperm injection–prevalence, types, sex distribution and reproductive relevance, Hum. Reprod., 1998. vol. 13, pp. 576—582.

    Article  CAS  PubMed  Google Scholar 

  13. Pauer, H.U., Hinney, B., Michelmann, H.W., et al., Relevance of genetic counselling in couples prior to intracytoplasmic sperm injection, Hum. Reprod., 1997, vol. 12, pp. 1909—1912.

    Article  CAS  PubMed  Google Scholar 

  14. Peschka, B., Leygraaf, J., Van der Ven, K., et al., Type and frequency of chromosome aberrations in 781 couples undergoing intracytoplasmic sperm injection, Hum. Reprod., 1999, vol. 14, pp. 2257—2263.

    Article  CAS  PubMed  Google Scholar 

  15. Riccaboni, A., Lalatta, F., Caliari, I., et al., Genetic screening in 2,710 infertile candidate couples for assisted reproductive techniques: results of application of Italian guidelines for the appropriate use of genetic tests, Fertil. Steril., 2008, vol. 89, pp. 800—808. https://doi.org/10.1016/j.fertnstert.2007.04.032

    Article  PubMed  Google Scholar 

  16. Rosenbusch, B., Somatic chromosomal abnormalities in couples undergoing infertility treatment by intracytoplasmic sperm injection, J. Genet., 2010, vol. 89, pp. 105—108.

    Article  PubMed  Google Scholar 

  17. Scholtes, M.C.W., Behrend, C., Dietzel-Dahmen, J., et al., Chromosomal aberrations in couples undergoing intracytoplasmic sperm injection: influence on implantation and ongoing pregnancy rate, Fertil. Steril., 1998, vol. 70, pp. 933—937.

    Article  CAS  PubMed  Google Scholar 

  18. Testart, J., Gautier, E., Brani, C., et al., Intracytoplasmic sperm injection in infertile patients with structural chromosome abnormalities, Hum. Reprod., 1996, vol. 11, pp. 2609—2612.

    Article  CAS  PubMed  Google Scholar 

  19. Tiboni, G.M., Verna, I., Giampietro, F., et al., Cytogenetic findings and reproductive outcome of infertile couples referred to an assisted reproduction program, Gynecol. Endocrinol., 2011, vol. 27, pp. 669—674. https://doi.org/10.3109/09513590.2010.533799

    Article  PubMed  Google Scholar 

  20. Al-Hussain, M., Al-Nuaim, L., Abu, TalibZ., and Zaki, O.K., Cytogenetic study in cases with recurrent abortion in Saudi Arabia, Ann. Saudi Med., 2000, vol. 20, pp. 233—236.

    Article  CAS  PubMed  Google Scholar 

  21. Bourrouillou, G., Colombies, P., and Dastugue, N., Chromosome studies in 2136 couples with spontaneous abortions, Hum. Reprod., 1986, vol. 74, pp. 399—401.

    CAS  Google Scholar 

  22. Cantú, J.M., Hernández, A., Jiménez-Sáinz, M., et al., Chromosome aberrations in 334 individuals with various types of abortion (including 144 couples), Rev. Invest. Clin. (Mex.), 1985, vol. 37, pp. 131—134.

    Google Scholar 

  23. Castle, D. and Bernstein, R., Cytogenetic analysis of 688 couples experiencing multiple spontaneous abortions, Am. J. Med. Genet., 1988, vol. 29, pp. 549—556. https://doi.org/10.1002/ajmg.1320290312

    Article  CAS  PubMed  Google Scholar 

  24. Celep, F., Karaguzel, A., Ozeren, M., and Bozkaya, H., The frequency of chromosomal abnormalities in patients with reproductive failure, Eur. J. Obstet. Gynecol., 2006, vol. 127, pp. 106—109. https://doi.org/10.1016/j.ejogrb.2005.12.019

    Article  CAS  Google Scholar 

  25. De la Fuente-Cortés, B.E., Cerda-Flores, R.M., Dávila-Rodríguez, M.I., et al., Chromosomal abnormalities and polymorphic variants in couples with repeated miscarriage in Mexico, Reprod. Biomed. Online, 2009, vol. 18, pp. 543—548.

    Article  PubMed  Google Scholar 

  26. Dubey, S., Chowdhury, M.R., Prahlad, B., et al., Cytogenetic causes for recurrent spontaneous abortions—an experience of 742 couples (1484 cases), Indian J. Hum. Genet., 2005, vol. 11, pp. 94—98.

    Article  Google Scholar 

  27. Dutta, U.R., Rajitha, P., Pidugu, V.K., and Dalal, A.B., Cytogenetic abnormalities in 1162 couples with recurrent miscarriages in southern region of India: report and review, J. Assist. Reprod. Genet., 2011, vol. 28, pp. 145—149. https://doi.org/10.1007/s10815-010-9492-6

    Article  PubMed  Google Scholar 

  28. FitzSimmons, J., Wapner, R.J., and Jackson, L.G., Repeated pregnancy loss, Am J. Med. Genet., 1983, vol. 16, pp. 7—13. https://doi.org/10.1002/ajmg.1320160103

    Article  CAS  PubMed  Google Scholar 

  29. Fortuny, A., Carrio, A., Soler, A., et al., Detection of balanced chromosome rearrangements in 445 couples with repeated abortion and cytogenetic prenatal testing in carriers, Fertil. Steril., 1988, vol. 49, pp. 774—779.

    Article  CAS  PubMed  Google Scholar 

  30. Fryns, J.P., Kleczkowska, A., Kubien, E., et al., Cytogenetic survey in couples with recurrent fetal wastage, Hum. Genet., 1984, vol. 65, pp. 336—354.

    Article  CAS  PubMed  Google Scholar 

  31. Fryns, J.P. and Van Buggenhout, G., Structural chromosome rearrangements in couples with recurrent fetal wastage, Eur. J. Obstet. Gynecol. Reprod. Biol., 1998, vol. 81, pp. 171—176. 10.1016/S0301-2115(98)00185-7

  32. Ghazaey, S., Keify, F., Mirzaei, F., et al., Chromosomal amalysis of couples with repeated spontaneous abortions in northeastern Iran, Int. J. Fertil. Steril., 2015, vol. 9, pp. 47—54. https://doi.org/10.22074/ijfs.2015.4208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goddijn, M., Joosten, J.H.K., Kneg, A.C., et al., Clinical relevance of diagnosis structural chromosome abnormalities in couples with repeated miscarriage, Hum. Reprod., 2004, vol. 19, pp. 1013—1017. https://doi.org/10.1093/humrep/deh172

    Article  CAS  PubMed  Google Scholar 

  34. Husslein, P., Huber, J., Wagenbichler, P., and Schnedl, W., Chromosome abnormalities in 150 couples with multiple spontaneous abortions, Fertil. Steril., 1982, vol. 37, pp. 379—383.

    Article  CAS  PubMed  Google Scholar 

  35. Ioan, D.M., Dumitriu, L., Muşeşeanu, P., et al., Cytogenetic investigation in 300 couples with recurrent fetal wastage, Endocrinologie, 1987, vol. 25, pp. 145—148.

    CAS  PubMed  Google Scholar 

  36. Karaman, A. and Ulug, P., Cytogenetic analysis of couples with recurrent miscarriages: a series of 316 cases, New J. Med., 2013, vol. 30, pp. 30—32.

    Google Scholar 

  37. Kochhar, P.K. and Ghosh, P., Reproductive outcome of couples with recurrent miscarriage and balanced chromosomal abnormalities, J. Obstet. Gynecol. Res., 2013, vol. 39, pp. 113—120. https://doi.org/10.1111/j.1447-0756.2012.01905.x

    Article  Google Scholar 

  38. Lippman-Hand, A. and Vekemans, M., Balanced translocations among couples with two or more spontaneous abortions: are males and females equally likely to be carriers?, Hum. Reprod., 1983, vol. 63, pp. 252—257.

    CAS  Google Scholar 

  39. Meza-Espinoza, J.P., Anguiano, L.O., and Rivera, H., Chromosomal abnormalities in couples with reproductive disorders, Gynecol. Obstet. Invest., 2008, vol. 66, no. 25, pp. 237—240.

    Article  PubMed  Google Scholar 

  40. Nazmy, N.A., Cytogenetic studies of couples with reproductive failure in Alexandria, Egypt, J. Egypt Public Health. Assoc., 2008, vol. 83, pp. 255—271. https://doi.org/10.1159/000147170

    Article  PubMed  Google Scholar 

  41. Ocak, Z., Ȍzlȕ, T., and Ozyurt, O., Association of recurrent pregnancy loss with chromosomal abnormalities and hereditary thrombophilias, Afr. Health Sci., 2013, vol. 13, pp. 447—452. https://doi.org/10.4314/ahs.v13i2.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Osztovics, M.K., Tóth, S.P., and Wessely, J.A., Cytogenetic investigations in 418 couples with recurrent fetal wastage, Ann. Génét., 1982, vol. 25, pp. 232—236.

    CAS  PubMed  Google Scholar 

  43. Portnoï, M.-F., Joye, N., Den Akker, J.V., et al., Karyotypes of 1142 couples with recurrent abortion, Obstet. Gynecol., 1988, vol. 72, pp. 31—34.

    PubMed  Google Scholar 

  44. Schwartz, S. and Palmer, C.G., Chromosomal findings in 164 couples with repeated spontaneous abortions: with special consideration to prior reproductive history, Hum. Reprod., 1983, vol. 63, pp. 28—34.

    CAS  Google Scholar 

  45. Sheth, F.J., Liehr, T., Kumari, P., et al., Chromosomal abnormalities in couples with repeated fetal loss: an Indian retrospective study, Indian J. Hum. Genet., 2013, vol. 19, pp. 415—422. https://doi.org/10.4103/0971-6866.124369

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sugiura-Ogasawara, M., Aoki, K., and Fujii, T., Subsequent pregnancy outcomes in recurrent miscarriage patients with a paternal or maternal carrier of a structural chromosome rearrangement, J. Hum. Genet., 2008, vol. 53, pp. 622—628. https://doi.org/10.1007/s10038-008-0290-2

    Article  PubMed  Google Scholar 

  47. Tsenghi, C., Metaxotou, C., Kalpini-Mavrou, A., et al., Parental chromosome translocations and fetal loss, Obstet. Gynecol., 1981, vol. 58, pp. 456—458.

    CAS  PubMed  Google Scholar 

  48. Tunc, E., Tanriverdi, N., Demirhan, O., et al., Chromosomal analyses of 1510 couples who have experienced recurrent spontaneous abortions, Reprod. Biomed. Online, 2016, vol. 32, pp. 414—419. https://doi.org/10.1016/j.rbmo.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  49. Turleau, C., Chavin-Colin, F., and de Grouchy, J., Cytogenetic investigation in 413 couples with spontaneous abortions, Eur. J. Obstet. Gynecol. Reprod. Biol., 1979, vol. 9, pp. 65—74.

    Article  CAS  PubMed  Google Scholar 

  50. Valkova, G., The reproductive risk for carriers of balanced chromosome aberrations, Genet. Breed. (Sofia), 1986, vol. 19, pp. 205—2011.

    Google Scholar 

  51. Åbyholm, T. and Stray-Pedersen, S., Hypospermiogenesis and chromosomal aberrations: a clinical study of azoospermoc and oligozoospermoc men with normal and abnormal chromosomes, Int. J. Androl., 1981, vol. 4, pp. 546—558.

    Article  PubMed  Google Scholar 

  52. Alhalabi, M., Kenj, M., Monem, F., et al., High prevalence of genetic abnormalities in Middle Eastern patients with idiopathic non-obstructive azoospermia, J. Assist. Reprod. Genet., 2013, vol. 30, pp. 799—805. https://doi.org/10.1007/s10815-013-9995-z

    Article  PubMed  PubMed Central  Google Scholar 

  53. Amouri, A., Hamami, W., and Kilani, O., Chromosomal evaluation in a group of Tunisian patients with non-obstructive azoospermia and severe oligospermia and severe oligospermia attending a Tunisian cytogenetic department, C.R. Biol., 2014, vol. 337, pp. 223—228. https://doi.org/10.1016/j.crvi.2014.02.006

    Article  PubMed  Google Scholar 

  54. Antonelli, A., Gandini, L., Petrinelli, P., et al., Chromosomal alterations and male infertility, J. Endocrinol. Invest., 2000, vol. 23, pp. 677—683.

    Article  CAS  PubMed  Google Scholar 

  55. Bertini, V., Simi, P., and Valetto, A., Cytogentic study of 435 subfertile men: incidence and clinical features, J. Reprod. Med., 2006, vol. 51, pp. 15—20.

    PubMed  Google Scholar 

  56. Bor, P., Hindkjær, J., Kølvaa, S., and Ingerslev, H.J., Y-chromosome microdeletions and cytogenetic findings in unselected ICSI candidates at a Danish fertility clinic, J. Assist. Reprod. Genet., 2002, vol. 19, pp. 224—231. https://doi.org/10.1023/A:1015358802577

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bourrouillou, G., Mansat, A., Calvas, P., et al., Chromosome anomalies and male infertility: a study of 1,444 subjects, Bull. Assoc. Anat. (Nancy), 1987, vol. 71, no. 215, pp. 29—31.

    CAS  Google Scholar 

  58. Cavkaytar, S., Batioglu, S., Gunel, M., et al., Genetic evaluation of severe male factor infertility in Turkey: a cross-sectional study, Hum. Fertil., 2012, vol. 15, pp. 100—106. https://doi.org/10.3109/14647273.2012.685923

    Article  CAS  Google Scholar 

  59. Cortés-Gutiérrez, E.A., Cerda-Flores, R.M., Dávila-Rodríguez, M.T., et al., Chromosomal abnormalities and polymorphisms in Mexican infertile men, Arch. Androl., 2004, vol. 50, pp. 261—265. https://doi.org/10.1080/01485010490448750

    Article  CAS  PubMed  Google Scholar 

  60. Dul, E.C., van Echten-Arends, J., Groen, H., et al., Chromosomal abnormalities in azoospermic and non-azoospermic men: numbers needed to be screened to prevent adverse pregnancy outcome, Hum. Reprod., 2012, vol. 27, pp. 2850—2856. https://doi.org/10.1093/humrep/des222

    Article  CAS  PubMed  Google Scholar 

  61. Elfateh, F., Wang, R., Zhang, Z., et al., Influence of genetic abnormalities on semen quality and male fertility, Iran J. Reprod. Med., 2014, vol. 12, pp. 95—102.

    PubMed  PubMed Central  Google Scholar 

  62. Elghezal, H., Hidar, S., Braham, R., et al., Prevalence of chromosomal abnormalities in couples with recurrent miscarriage, Fertil. Steril., 2006, vol. 86, pp. 1792—1795.

    Article  PubMed  Google Scholar 

  63. Faed, M.J., Robertson, J., Lamont, M.A., et al., A cytogenetic survey of men being investigated for infertility, J. Reprod. Fertil., 1979, vol. 56, pp. 209—216.

    Article  CAS  PubMed  Google Scholar 

  64. Foresta, C., Garolla, A., Bartoloni, L., et al., Genetic abnormalities among severely oligospermic men who are candidates for intracytoplasmic sperm injection, J. Clin. Endocrinol. Metab., 2005, vol. 90, pp. 152—156. https://doi.org/10.1210/jc.2004-1469

    Article  CAS  PubMed  Google Scholar 

  65. Frouzandeh, M., Saeideh, S., and Sanas, M., Chromosomal abnormalities in infertile men referred to Iran Transfusion Organization Research Center, J. Reprod. Infertil., 2010, vol. 11, pp. 175—178.

    PubMed  Google Scholar 

  66. Fu, L., Xiang, D.-K., Ding, X.-P., et al., Genetic screening for chromosomal abnormalities and Y chromosome microdeletions in Chinese infertile men, J. Assist. Reprod. Genet., 2012, vol. 29, pp. 521—527. https://doi.org/10.1007/s10815-012-9741-y

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gekas, J., Thepot, F., Turleau, C., et al., Chromosomal factors of infertility in candidate couples for ICSI: an equal risk of constitutional aberrations in women and men, Hum. Reprod., 2001, vol. 16, pp. 82—90.

    Article  CAS  PubMed  Google Scholar 

  68. Hofherr, S.E., Wiktor, A.E., Kipp, B.R., et al., Clinical diagnostic testing for the cytogenetic and molecular causes of male infertility: the Mayo Clinic experience, J. Assist. Reprod. Genet., 2011, vol. 28, pp. 1091—1098. https://doi.org/10.1007/s1015-011-9633-6

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kumar, R., Tanwar, M., Ammimi, A.C., et al., Robertsonian translocations and their role in pathogenesis of recurrent in vitro fertilization failure, Med. Sci. Monit., 2008, vol. 14, pp. 617—620.

    Google Scholar 

  70. Matsuda, T., Horii, Y., Ogura, K., et al., Chromosomal survey of 1001 subfertile males: incidence and clinical features of males with chromosomal anomalies, Acta Urol. Jpn., 1992, vol. 38, pp. 803—809.

    CAS  Google Scholar 

  71. Mićić, M., Mićić, S., and Diklić, V., Chromosomal constitution of infertile men, Clin. Genet., 1984, vol. 25, pp. 33—36. https://doi.org/10.1111/j.1399-0004.1984.tb00459.x

    Article  PubMed  Google Scholar 

  72. Mierla, D., Jardan, D., and Stoian, V., Chromosomal abnormality in men with impaired spermatogenesis, Int. J. Fertil. Steril., 2014, vol. 8, pp. 35—42.

    PubMed  PubMed Central  Google Scholar 

  73. Mohammed, F., Al-Yatama, F., and Al-Bader, M., Primary male infertility in Kuwait: a cytogenetic and molecular study of 289 infertile Kuwait patients, Andrologia, 2007, vol. 39, pp. 87—92. https://doi.org/10.1111/j.1439-0272.2007.00769.x

    Article  CAS  PubMed  Google Scholar 

  74. Naasse, Y., Charout, H.El., and Houate, B., Chromosome abnormalities and Y chromosome microdeletions in infertile men from Morocco, BMC Urol., 2015, vol. 15, p. 95. https://doi.org/10.1186/s12894-015-0089-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nakamura, Y., Kitamura, M., and Nishimura, K., Chromosomal variants among 1790 infertile men, Int. J. Urol., 2001, vol. 8, pp. 49—52. https://doi.org/10.1046/j.1442-2042.2001.00242.x

    Article  CAS  PubMed  Google Scholar 

  76. Ng, P.P., Tang, M.H., and Lau, E.T., Chromosomal anomalies among Chinese infertile men in Hong Kong, Hong Kong Med. J., 2009, vol. 15, pp. 31—38.

    PubMed  Google Scholar 

  77. Ocak, Z., Ȕyetȕork, U., and Dinҁer, M.M., Clinical and prognostic importance of chromosomal abnormalities, Y chromosome microdeletions, and CFTR gene mutations in individuals with azoospermia or severe oligospermia, Turk. J. Med. Sci., 2014, vol. 44, pp. 347—351. https://doi.org/10.3906/sag-1301-67

    Article  PubMed  Google Scholar 

  78. Olesen, I.A., Andersson, A.-M., and Aksglaede, L., Clinical, genetic, biochemical, and testicular biopsy findings among 1213 men evaluated for infertility, Fertil. Steril., 2017, vol. 107, pp. 74—82. e7. https://doi.org/10.1016/j.fertnstert.2016.09.015

  79. Pandiyan, N. and Jequer, A.M., Mitotic chromosomal anomalies among 1210 infertile men, Hum. Reprod., 1996, vol. 11, pp. 2604—2608.

    Article  CAS  PubMed  Google Scholar 

  80. Rao, K., Babu, K.A., Kanakavalli, M.K., et al., Prevalence of chromosomal defects in azoospermic and oligoastheno-teratozoospermic infertility clinic, Reprod. Biomed. Online, 2005, vol. 10, pp. 467—472.

    Article  PubMed  Google Scholar 

  81. Retief, A.E. Van Zyl, J.A., et al., Chromosome studies in 496 infertile males with a sperm count below 10 million/ml, Hum. Reprod., 1984, vol. 66, pp. 162—164.

    CAS  Google Scholar 

  82. Salahshourifar, I., Gilani, M.A.S., sadat Masoudi, N., and Gourabi, H., Chromosomal abnormalities in Iranian infertile males who are candidates for assisted reproductive techniques, Iran. J. Fertil. Steril., 2007, vol. 1, pp. 75—79.

    Google Scholar 

  83. Tuerlings, J.H.A.M., de France, H.F., Hamers, A., et al., Chromosome studies in 1792 males prior to intra-cytoplasmic sperm injection: the Dutch experience, Eur. J. Hum. Genet., 1998, vol. 6, pp. 194—200. https://doi.org/10.1038/sj.ejhg.5200193

    Article  CAS  PubMed  Google Scholar 

  84. Wang, R.-X., Fu, C., Yang, Y.-P., et al., Male infertility in China: laboratory findings for AZF misrodeletions and chromosomal abnormalities in infertile men from Northeastern China, J. Assist. Reprod. Genet., 2010, vol. 27, pp. 391—396. https://doi.org/10.1007/s10815-010-9420-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yatsenko, A.N., Yatsenko, S.A., and Weedin, J.W., Comprehensive 5-year study of cytogenetic aberrations in 668 infertile men, J. Urol., 2010, vol. 183, pp. 1636—1642.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yoshida, A., Miura, K., and Shirai, M., Cytogenetic survey of 1007 infertile males, Urol. Int., 1997, vol. 58, pp. 166–176.

  87. De Almeida, J.C.C., Llerena, J.C., Jr., and Gomes, D.M., Ring 13 in an adult male with a 13;13 translocation mother, Ann. Genet., 1983, vol. 26, pp. 112—115.

    CAS  PubMed  Google Scholar 

  88. Begleiter, M.L., Cox, G.F., and Pasztor, L.M., Post-zygotic origin of a biparental 13;13 Robertsonian translocation in the mother of a fetus with trisomy 13, Am. J. Hum. Genet., 2000, vol. 67, suppl. 4, p. 638.

    Google Scholar 

  89. Brash, I.M. and Smith, D.R., Absence of silver bands in human Robertsonian translocation chromosomes, Cytogenet. Cell. Genet., 1979, vol. 24, pp. 122—125. https://doi.org/10.1159/000131365

    Article  Google Scholar 

  90. Daniel, A., Hook, E.B., and Wulf, G., Risks of unbalanced progeny at amniocentesis to carriers of chromosome rearrangements: data from United States and Canadian laboratories, Am. J. Med. Genet., 1989, vol. 33, pp. 14—53. https://doi.org/10.1002/ajmg.1320330105

    Article  CAS  PubMed  Google Scholar 

  91. Faraj Pour, A., Azimi, C., and Khaleghian, M., Recurrent spontaneous abortions due to a homologous Robertsonian translocation (13q13q), Eur. J. Hum. Genet., 2009, vol. 17, suppl. 2, p. 101.

    Google Scholar 

  92. Kozlova, S.I., Korobova, L.I., Tsvetkova, T.G., and Kulieva, L.M., Genetic counseling at cyclopia, Akusher. Ginekol., 1976, vol. 12, pp. 45—51.

    Google Scholar 

  93. Lazyuk, G.I., Lur’e, I.V., Gurevich, D.B., et al., A case of homologous Robertson translocation between chromosomes 13–t(13; 13)(p11; q11) in a mother of three children with Patau syndrome, Registr khromosomnykh boleznei cheloveka (Register of Human Chromosomal Diseases), Moscow: Inst. Med. Genet., 1984.

  94. Niebuhr, E., Dicentric and monocentric Robertsonian translocations in man, Humangenetik, 1972, vol. 16, pp. 217—226.

    CAS  PubMed  Google Scholar 

  95. Parslow, M.I., Gardner, R.J.M., and Veale, A.M.O., Giemsa banding in the t(13q13q) carrier mother of translocation trisomy 13 abortus, Humangenetik, 1973, vol. 18, pp. 183—184.

    Article  CAS  PubMed  Google Scholar 

  96. Romain, D.R., Columbano-Green, L., Sullivan, J., et al., Cd banding in a homologous Robertsonian 13;13 translocation, J. Med. Genet., 1982, vol. 19, pp. 306—309. https://doi.org/10.1136/jmg.19.4.306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Slater, H., Shaw, J.H., Dawson, G., et al., Maternal uniparental disomy of chromosome 13 in a phenotypically normal child, J. Med. Genet. 1994, vol. 31, pp. 644—646. https://doi.org/10.1136/jmg.31.8.644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stallard, R., Krueger, S., James, R.S., and Schwartz, S., Uniparental disomy 13 in a normal female due to transmission of maternal t(13q13q), Am. J. Med. Genet., 1995, vol. 57, pp. 14—18. https://doi.org/10.1002/ajmg.1320570105

    Article  CAS  PubMed  Google Scholar 

  99. Borgaonkar, D.S., Repository of Human Chromosomal Variants and Anomalies, Delaware: Med. Center Delaware, 1990, 13th ed.

    Google Scholar 

  100. Veld, P.A., Weber, R.F., Los, F.J., et al., Two cases of Robertsonian translocations in oligospermic males and their consequences for pregnancies induced by intracytoplasmic sperm injection, Hum. Reprod., 1997, vol. 12, pp. 1642—1644.

    Article  CAS  PubMed  Google Scholar 

  101. Zanganeh, M., Voghouie, S., Karimi-Nejad, A., et al., An interesting case of mosaic tetrasomy, trisomy, disomy and monosomy of chromosome 13, Eur. J. Hum. Genet., 2001, vol. 8, suppl., p. 0226.

  102. Zankl, H. and Hahman, S., Cytogenetic examination of the NOR activity in a proband with 13/13 translocation and in her relatives, Hum. Genet., 1978, vol. 43, pp. 275—279.

    Article  Google Scholar 

  103. Chen, C.-P., Chern, S.-R., Wu, C.-H., et al., Detection of balanced homologous acrocentric rearrangement rea(14q14q) and low-grade X-chromosome mosaicism in a couple with related pregnancy loss, Taiwan J. Obstet. Gynecol., 2010, vol. 42, pp. 239—242.

    Article  Google Scholar 

  104. Cinar, C., Beyazyurek, C., Ekmekci, C.G., et al., Sperm fluorescence in situ hybridization analysis revels normal sperm cells for 14;14 homologous male Robertsonian translocation carrier, Fertil. Steril., 2011, vol. 95, pp. 285—289. https://doi.org/10.1016/j.fertnstert.2010.05.033

    Article  Google Scholar 

  105. Gracias-Espinal, R., Roberts, S.H., Duckett, D.P., and Lawrence, K.M., Recurrent spontaneous abortions due to a homologous Robertsonian translocation (14q14q), J. Med. Genet., 1982, vol. 19, pp. 465—467. https://doi.org/10.1136/jmg.19.6.465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hulten, M. and Lindsten, J., The behavior of structural aberrations at male meiosis, in Human Population Cytogenetics, Jacobs, P.A., Price, W., and Law, P., Eds., Edinburgh: Edinburgh Univ. Press, 1970, pp. 23—61.

    Google Scholar 

  107. Maeda, T., Ohno, M., Takada, M., et al., Postzygotic D/D translocation homozygosity associated with recurrent abortion, Am. J. Med. Genet., 1983, vol. 15, pp. 389—392. https://doi.org/10.1002/ajmg.1320150304

    Article  CAS  PubMed  Google Scholar 

  108. Papenhausen, P.R., Mueller, O.T., Johnson, V.P., et al., Uniparental isodisomy of chromosome 14 in two cases: an abnormal child and a normal adult, Am. J. Med. Genet., 1995, vol. 59, pp. 271—275. https://doi.org/10.1002/ajmg.1320590302

  109. Pentao, L., Lewis, R.A., Ledbetter, D.H., et al., Maternal uniparental disomy of chromosome 14: association with autosomal recessive rod monochromacy, Am. J. Hum. Genet., 1992, vol. 50, pp. 690—699.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Schmid, W., Cytogenetic results in 96 couples with repeated abortions, Clin. Genet., 1980, vol. 17, p. 85.

    Google Scholar 

  111. Shandlorenko, S.K., Pantova, I.G., and Shushval, O.N., Cytogenetic studies in medical and genetic counseling for families with obstetric history, Aktual’nye voprosy profilaktiki nasledstvennykh boleznei (Topical Issues of the Prevention of Hereditary Diseases) (Proc. All-Union Symp.), Vilnus, 1986, pp. 132—133.

  112. Zhou, H.G., Kang, X.Z., and Zhang, Q.Q., Homologous 14q14q Robertsonian translocation in man, Chin. Med. J., 1983, vol. 96, pp. 625—633.

    CAS  PubMed  Google Scholar 

  113. Bartsch-Sandhoff, M., Fusion of homologous chromosomes (15q15q) as cause of recurrent abortion, Lancet, 1977, no. 18010, p. 551. https://doi.org/10.1016/S0140-6736(77)91418-0

  114. Biricik, A., Guney, I., Berkil, H., et al., A male (15;15) Robertsonian translocation case with 11 previous consecutive recurrent spontaneous abortions, Marmara Med. J., 2004, vol. 17, pp. 35—38.

    Google Scholar 

  115. Geraedts, J.P. and Klasen, E.C., Chromosome studies and α1-antitrypsin phenotypes in recurrent abortions, Clin. Genet., 1980, vol. 176, p. 68.

    Google Scholar 

  116. Gil’nich, N.A., Izotova, T.A., Knyazeva, G.P., et al., Cytogenetic abnormalities and chromosomal polymorphism associated with reproductive failure, II (IV) Rossiiskii S”ezd med. genetikov (2nd (4th) Russian Conference of Medical Geneticists), Kursk, 2000, pp. 118—119.

  117. Neri, G., Serra, A., Campana, M., and Tedeschi, B., Reproductive risks for translocation carriers: cytogenetic study and analysis of pregnancy outcome in 58 families, Am. J. Med. Genet., 1983, vol. 16, pp. 535—561. https://doi.org/10.1002/ajmg.1320160412

    Article  CAS  PubMed  Google Scholar 

  118. Kolgeci, S., Kolgeci, J., Azemi, M., et al., Reproductive risk of the silent carrier of Robertsonian translocation, Med. Arch., 2013, vol. 67, pp. 56—59. https://doi.org/10.5455/medarh.2013.67.56-59

    Article  PubMed  Google Scholar 

  119. Lipson, M.H. and Breg, W.R., Non-karyotyping evidence for mosaicism in 15;15 translocation: implications for genetic counseling and patient management, Am. J. Hum. Genet., 1978, vol. 30, suppl. 6, p. 58A.

    Google Scholar 

  120. Lucas, M., Translocation between both members of chromosome pair number 15 causing recurrent abortions, Ann. Hum. Genet., 1969, vol. 32, pp. 347—352.

    Article  CAS  PubMed  Google Scholar 

  121. Neri, G., Ricchi, R., Pelino, A., et al., A boy with ring chromosome 15 derived from a t(15q;15q) Robertsonian translocation in the mother: cytogenetic and biochemical findings, Am. J. Med. Genet., 1983, vol. 14, pp. 307—314. https://doi.org/10.1002/ajmg.1320140211

    Article  CAS  PubMed  Google Scholar 

  122. Robinson, W.P., Bernasconi, F., Basaran, S., et al., A somatic origin of homologous Robertsonian translocations and isochromosomes, Am. J. Hum. Genet., 1994, vol. 54, pp. 290—302.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yoshida, M.C., Nomoto, N., and Sasaki, M., Quinacrine fluorescence patterns in somatic chromosomes of a t(15q15q) carrier, Humangenetik, 1972, vol. 15, pp. 66—70.

    CAS  PubMed  Google Scholar 

  124. Zizka, J., Balicek, P., and Finkova, A., Translocation D/D involving two homologous chromosomes of the pair 15, Hum. Genet., 1977, vol. 36, pp. 123—125.

    Article  CAS  PubMed  Google Scholar 

  125. Blouin, J.-L., Avramapoulus, D., Pangalos, C., and Antonarakis, S.E., Normal phenotype with paternal uniparental disomy for chromosome 21, Am. J. Hum. Genet., 1993, vol. 53, pp. 1074—1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Blouin, J.-L., Binkert, F., and Antonarakis, S.E., Biparental inheritance of chromosome 21 polymorphic markers indicate that some Robertsonian translocations t(21;21) occur postzygotically, Am. J. Hum. Genet., 1994, vol. 49, pp. 363—368. https://doi.org/10.1002/ajmg.1320490333

    Article  CAS  Google Scholar 

  127. Creau-Goldberg, N., Gegaine, A., Delabar, J.M., et al., Maternal origin of a de novo balanced t(21q21q) identified by ets-2 polymorphism, Hum. Genet., 1987, vol. 76, pp. 396—398.

    Article  CAS  PubMed  Google Scholar 

  128. Furbetta, M., Falorni, A., Antignain, P., and Cao, A., Sibship (21q21q) translocation Down’s syndrome with maternal transmission, J. Med. Genet., 1973, vol. 10, pp. 371—375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kovacova, E. and Cisarik, F., 21/21 carrier as the result of unexpected segregation of Robertsonian translocation 14/21, Eur. J. Hum. Genet., 2001, vol. 9, suppl. 1, p. 144.

    Google Scholar 

  130. Lukas, M., Wallace, I., and Hirschorn, K., Recurrent abortions and chromosome abnormalities, J. Obstet. Gynaecol., 1972, vol. 79, pp. 1119—1127.

    Article  Google Scholar 

  131. Neumann, T.E., Bogdanova, N., Exeler, J.R., et al., Confirmed Robertsonian t(21;21) in a mother of two healthy boys with normal karyotype (46,XY), Ann. Genet., 2003, vol. 46, suppl. 2—3, p. 201.

  132. Sudha, T. and Gopinath, P.M., Homologous Robertsonian translocation (21q21q) and abortions, Hum. Genet., 1990, vol. 85, pp. 253—255.

    Article  CAS  PubMed  Google Scholar 

  133. Uehara, S., Takabayashi, T., Okamura, K., and Yajima, A., The outcome of pregnancy and prenatal chromosomal diagnosis of fetuses in couples including a translocation carrier, Prenat. Diagn., 1992, vol. 12, pp. 1009—1018. https://doi.org/10.1002/pd.1970121206

    Article  CAS  PubMed  Google Scholar 

  134. Chopade, D.K., Harde, H., Ugale, P., and Chopade, S., Unexpected inheritance of a balanced homologous translocation t(22q;22q) from father to a phenotypically normal daughter, Indian J. Hum. Genet., 2014, vol. 20, pp. 85—89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Farah, L.M.S., de Nazareth, H.R., Doenikoff, M., and Delascio, D., Balanced homologous translocation t(22q22q) in a phenotypically normal woman with repeated spontaneous abortions, Humangenetik, 1975, vol. 28, pp. 357—360.

    CAS  PubMed  Google Scholar 

  136. Kirkelis, V.G.H.J., Hustinx, T.W.J., and Scheres, J.M.J.C., Habitual abortion and translocation (22q;22q): unexpected transmission from a mother to her phenotypically normal daughter, Clin. Genet., 1980, vol. 18, pp. 456—461. https://doi.org/10.1111/j.1399-0004.1980.tb01794.x

    Article  Google Scholar 

  137. Laurent, C., Papathanassiou, Z., Haour, P., and Cognat, M., Mitotic and meiotic studies on 70 cases of male sterility, Andrologie, 1973, vol. 5, pp. 193—200.

    Article  CAS  PubMed  Google Scholar 

  138. Lewis, B.V. and Ridler, M.A.C., Recurrent abortion associated with a balanced 22;22 translocation, or isochromosome 22q in a monozygous twin, Hum. Genet., 1977, vol. 37, pp. 81—85.

    Article  CAS  PubMed  Google Scholar 

  139. Maeda, T., Ohno, M., Shimada, N., et al., A 22/22 translocation carrier with recurrent abortions demonstrated by a Giemsa banding technique, Hum. Genet., 1976, vol. 31, pp. 243—245.

    Article  CAS  PubMed  Google Scholar 

  140. Mameli, M., Cardia, S., Milia, A., and Seabright, M., A further case of a 22;22 Robertsonian translocation associated with recurrent abortions, Hum. Genet., 1978, vol. 41, pp. 359—361.

    Article  CAS  PubMed  Google Scholar 

  141. Miny, P., Koppers, B., Bogdanova, N., et al., Paternal uniparental disomy 22, Med. Genet., 1995, vol. 7, p. 216.

  142. Multani, A.S., Radhakrishna, U., Sheth, F.J., et al., Translocation t(22;22)(p11.1;q11.1) and NOR studies in a female with a history of repeated fetal loss, Ann. Genet., 1992, vol. 35, pp. 105—109.

    CAS  PubMed  Google Scholar 

  143. Palmer, C.G., Schwartz, S., and Hodes, M.E., Transmission of a balanced homologous t(22q;22q) translocation from mother to normal daughter, Clin. Genet., 1980, vol. 17, pp. 418—422. https://doi.org/10.1111/j.1399-0004.1980.tb00173.x

    Article  CAS  PubMed  Google Scholar 

  144. Pantova, I.G. and Chen, T.P., The case of balanced translocation between chromosomes 22, in Sovremennyye problemy v klinicheskoy tsitogenetike: sbornik nauchnykh trudov (Current Challenges in Clinical Cytogenetics: a Collection of Scientific Papers), Moscow: Inst. Med. Genet. Russ. Akad. Med. Sci., 1991, p. 82.

    Google Scholar 

  145. Schinzel, A.A., Basaran, S., Bernasconi, F., et at., Maternal uniparental disomy 22 has no impact on the phenotype, Am. J. Hum. Genet., 1994, vol. 54, pp. 21—24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Schwinger, E., Translocation 22/22? Lancet, 1973, vol. 2, pp. 854—855. https://doi.org/10.1016/S0140-6736(73)90908-2

  147. Temperani, P. and Forabosko, A., Recurrent abortion associated with rob(22/22) in a male carrier, Clin. Genet., 1980, vol. 17, p. 90.

    Google Scholar 

  148. Van Erp, F., Offspring of a male 45,XY,der(22;22)(q10;q10) carrier, Eur. J. Hum. Genet., 2016, vol. 24, suppl. 1, p. 58.

    Google Scholar 

  149. Zhao, W.-W., Wu, M., Chen, F., et al., Robertsonian translocations: an overview of 872 Robertsonian translocations identified in a diagnostic laboratory in China, PLoS One, 2015, vol. 10. e0122647. https://doi.org/10.1371/journal.pone.0122647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kovaleva, N.V., Sex-specific chromosome instability in early human development, Am. J. Med. Genet., 2005, vol. 136A, pp. 401—413. https://doi.org/10.1002/ajmg.a.30815

    Article  PubMed  Google Scholar 

  151. Harrison, J.C. and Schwab, C., Constitutional abnormalities of chromosome 21 predispose to IAMP21-acute lymphoblastic leukaemia, Eur. J. Med. Genet., 2016, vol. 59, pp. 162—165. https://doi.org/10.1016/j.ejmg.2016.01.006

    Article  PubMed  Google Scholar 

  152. Dallapiccola, B., Bianco, I., Brinchi, V., et al., t(21q;21q/r(t(21q;21q))) mosaic in two unrelated patients with mild stigmata of Down syndrome, Ann. Genet., 1982, vol. 25, pp. 56—58.

    CAS  PubMed  Google Scholar 

  153. Stetten, G., Tuck-Miller, C., Blakemore, K.J., et al., Evidence for involvement of a Rrobertsonian translocation 13 chromosome in formation of a ring chromosome 13, Mol. Biol. Med., 1990, vol. 7, pp. 479—484.

    CAS  PubMed  Google Scholar 

  154. Adam, L.R., Kashork, C.D., Van den Veyver, I.B., et al., Ring chromosome 15: discordant karyotypes in amniotic fluid, placenta and cord, Am. J. Hum. Genet., 1998, vol. 63, suppl., p. A126.

    Google Scholar 

  155. Fujimoto, A., Lin, M.S., Korula, S.R., and Wilson, M.G., Trisomy 14 mosaicism with t(14;15)(q11;p11) in offspring of a balanced translocation carrier mother, Am. J. Med. Genet., 1985, vol. 22, pp. 333—342. https://doi.org/10.1002/ajmg.1320220217

    Article  CAS  PubMed  Google Scholar 

  156. McFadden, D.E., Dill, F., and Kalousek, D.K., Fission in 1q isochromosome, Am. J. Hum. Genet., vol. 39, suppl. 3, p. A133.

  157. Fryns, J.P., Kleczkowska, A., Limbos, C., et al., Centric fission of chromosome 7 with 47,XX,del(7)(pter->cen::q21->qter)+cen fr karyotype in a mother and proximal 7q deletion in two malformed newborns, Ann. Genet., 1985, vol. 28, pp. 248—250.

    CAS  PubMed  Google Scholar 

  158. Del Porto, G., Di Fusco, C., Baldi, M., et al., Familial centric fission of chromosome 4, J. Med. Genet., 1984, vol. 21, pp. 388—391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kovaleva, N.V., Nonmosaic balanced homologous translocations of major clinical significance: some may be mosaic, Am. J. Med. Genet., Part A, 2007, vol. 143, pp. 2843—2850. https://doi.org/10.1002/ajmg.a.31745

    Article  CAS  Google Scholar 

  160. Hsiang, Y.H., Berkovitz, G.D., Bland, G.L., et al., Gonadal function in patients with Down syndrome, Am. J. Med. Genet., 1987, vol. 27, pp. 449—458.

    Article  CAS  PubMed  Google Scholar 

  161. Kim, S.T., Cha, Y.B., Park, J.M., and Gye, M.C., Successful pregnancy and delivery from frozen-thawed embryos after cytoplasmic sperm injection using round-headed spermatozoa and assisted oocyte activation in a globozoospermic patient in mosaic Down syndrome, Fertil. Steril., 2001, vol. 75, pp. 445—447. https://doi.org/10.1016/S0015-0282(00)01698-8

  162. Aghajanova, L., Popwell, J.M., Chetkowski, R.J., and Herndon, C.N., Birth of a healthy child after preimplantation genetic screening of embryos from sperm of a man with non-mosaic Down syndrome, J. Assist. Reprod. Genet., 2015, vol. 32, pp. 1409—1413. https://doi.org/10.1007/s10815-015-0525-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kovaleva.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovaleva, N.V. Homologous Robertsonian Translocations: Spectrum, Sex Ratios, and Reproductive Risks. Russ J Genet 55, 10–23 (2019). https://doi.org/10.1134/S1022795419010095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419010095

Keywords:

Navigation