Skip to main content
Log in

Synthesis and properties of fuel cell anodes based on (La0.5 + x Sr0.5 − x )1 − y Mn0.5Ti0.5O3 − δ (x = 0–0.25, y = 0–0.03)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Results are presented of studying electrochemical properties of perovskite-like solid solutions (La0.5 + x Sr0.5 − x )1 − y Mn0.5Ti0.5O3 − δ (x = 0–0.25, y = 0–0.03) synthesized using the citrate technique and studied as oxide anodic materials for solid oxide fuel cells (SOFC). X-ray diffraction (XRD) analysis is used to establish that the materials are stable in a wide range of oxygen chemical potential, stable in the presence of 5 ppm H2S in the range of intermediate temperatures, and also chemically compatible with the solid electrolyte of La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 − δ (LSGMC). It is shown that transition to a reducing atmosphere results in a decrease in electron conductivity that produced a significant effect on the electrochemical activity of porous electrodes. Model cells of planar SOFC on a supporting solid-electrolyte membrane (LSGMC) with anodes based on (La0.6Sr0.4)0.97Mn0.5Ti0.5O3 − δ and (La0.75Sr0.25)0.97Mn0.5Ti0.5O3 − δ and a cathode of Sm0.5Sr0.5CoO3 − δ are manufactured and tested using the voltammetry technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishihara, T., Tabuchi, J., Ishikawa, S., Yan, J., Enoki, M., and Matsumoto, H., Solid State Ionics, 2006, vol. 177, nos. 19–25, p. 1949.

    CAS  Google Scholar 

  2. Choi, J.-J., Cho, K.-S., Choi, J.-H., Ryu, J., Hahn, B.-D., Yoon, W.-H., Kim, J.-W., Ahn, C.-W., Park, D.-S., and Yun, J., Int. J. Hydrogen Energy, 2012, vol. 37, no. 8, p. 6830.

    CAS  Google Scholar 

  3. Kim, K.N., Kim, B.K., Son, J.W., Kim, J., Lee, H.-W., Lee, J.-H., and Moon, J., Solid State Ionics, 2006, vol. 177, nos. 19–25, p. 2155.

    CAS  Google Scholar 

  4. Somalu, M.R., Yufit, V., Cumming, D., Lorente, E., and Brandon, N.P., Int. J. Hydrogen Energy, 2012, vol. 36, no. 9, p. 5557.

    Google Scholar 

  5. Kuhn, J.N., Lakshminarayanan, N., and Ozkan, U.S., J. Mol. Catal. A: Chem., 2008, vol. 282, nos. 1–2, p. 9.

    CAS  Google Scholar 

  6. Kolotygin, V.A., Tsipis, E.V., Shaula, A.L., Naumovich, E.N., Frade, J.R., Bredikhin, S.I., and Kharton, V.V., J. Solid State Electrochem., 2011, vol. 15, no. 2, p. 313.

    CAS  Google Scholar 

  7. Kim, J.H., Schlegl, H., and Irvine, J.T.S., Int. J. Hydrogen Energy, 2012, vol. 37, no. 19, p. 14511.

    CAS  Google Scholar 

  8. Kolotygin, V.A., Tsipis, E.V., Ivanov, A.I., Fedotov, Y.A., Burmistrov, I.N., Agarkov, D.A., Sinitsyn, V.V., Bredikhin, S.I., and Kharton, V.V., J. Solid State Electrochem., 2012, vol. 16, no. 7, p. 2335.

    CAS  Google Scholar 

  9. Kolotygin, V.A., Tsipis, E.V., Lu, M.F., Pivak, Y.V., Yarmolenko, S.N., Bredikhin, S.I., Kharton, V.V., Solid State Ionics, 2014, vol. 260, p. 15.

    Google Scholar 

  10. Ovalle, A., Ruiz-Morales, J.C., Canales-Vázquez, J., Marrero-López, D., and Irvine, J.T.S., Solid State Ionics, 2006, vol. 177, nos. 19–25, p. 1997.

    CAS  Google Scholar 

  11. Choi, J.-J., Cho, K.-S., Choi, J.-H., Ryu, J., Hahn, B.-D., Yoon, W.-H., Kim, J.-W., Ahn, C.-W., Park, D.-S., and Yun, J., Int. J. Hydrogen Energy, 2012, vol. 37, no. 8, p. 6830.

    CAS  Google Scholar 

  12. Perovskite Oxide for Solid Oxide Fuel Cells, Ishihara, T., Ed., Springer, 2009.

    Google Scholar 

  13. Pechini, M., US Patent 330697, 1967.

  14. Burmistrov, I.N., Cand. Sci. (Phys.-Math.) Dissertation, Chernogolovka: IFTT RAN, 2010.

    Google Scholar 

  15. Urusov, V.S., Teoreticheskaya kristallokhimiya (Theoretical Crystallochemistry), Moscow: Izd-vo MGU, 1987.

    Google Scholar 

  16. Jiang, S.P., J. Mater. Sci., 2008, vol. 43, no. 21, p. 6799.

    CAS  Google Scholar 

  17. Samsonov, G.V., Fiziko-khimicheskie svoistva okislov (Physico-Chemical Properties of Oxides), Moscow: Metallurgiya, 1978.

    Google Scholar 

  18. Hwang, C., Tsai, C.-H., Lo, C.-H., and Sun, C.-H., J. Power Sources, 2008, vol. 180, no. 1, p. 132.

    CAS  Google Scholar 

  19. Hong, J.-E., Inagaki, T., Ida, S., and Ishihara, T., Int. J. Hydrogen Energy, 2011, vol. 36, no. 22, p. 14632.

    CAS  Google Scholar 

  20. Tsipis, E.V. and Kharton, V.V., J. Solid State Electrochem., 2011, vol. 15, no. 5, p. 1007.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ivanov.

Additional information

Original Russian Text © A.I. Ivanov, D.A. Agarkov, I.N. Burmistrov, E.A. Kudrenko, S.I. Bredikhin, V.V. Kharton, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 8, pp. 814–820.

This publication was prepared based on a lecture delivered at the All_Russian Conference with international participation “Fuel Cells and Power Plants,” Chernogolovka, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.I., Agarkov, D.A., Burmistrov, I.N. et al. Synthesis and properties of fuel cell anodes based on (La0.5 + x Sr0.5 − x )1 − y Mn0.5Ti0.5O3 − δ (x = 0–0.25, y = 0–0.03). Russ J Electrochem 50, 730–736 (2014). https://doi.org/10.1134/S1023193514080047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514080047

Keywords

Navigation