Skip to main content
Log in

LaMnOx Air Diffusion Cathode for Primary Alkali Batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical performance of a new type of high-current air cathode is compared to off-the-shelf air electrodes (Alupower-A series; Eltech-B; Duracell-C) in 35% KOH solution. LaMnOx (LAM) is made by precipitation method resulting with sub-micron size particles. The electrode is single layer and very resistant to the KOH leakage. Approximately 65 m2 g–1 surface area is favorable for effective catalyst distribution and electrochemical active area utilization. LaMnOx type catalyst-supported electrode performs comparable or better than many of the commercial samples. Electrode shows a voltage drop of less than 200 mV at 150 mA cm–2 current density. Electrode structure does not show any sign of mass transfer limitation up to 250 mA cm–2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Vincent, C.A. and Scrosati, B., Modern Batteries, Arnold, 1997.

    Google Scholar 

  2. Materials for Electrochemical Energy Storage and Conversion: Batteries, Capacitors and Fuel Cells, Doughty, D.H., Vyas, B., Takamura, T., and Huff, J.R., Eds., Mater. Res. Soc., 1995.

    Google Scholar 

  3. Brandon, N.N.P. and Brett, D.D.J., Engineering porous materials for fuel cell applications, Math. Phys. Eng. Sci., 2006, vol. 364, p. 147.

    Article  CAS  Google Scholar 

  4. Fuel Cell Handbook, 7th ed., US Department of Energy, 2004.

  5. Pletcher, D. and Walsh, F.C., Industrial Electrochemistry, Chapman and Hall, 1993.

    Book  Google Scholar 

  6. Tomantschger, K. and Kordesch, K.V., Structural analysis of alkaline fuel cell electrodes and electrode materials, J. Power Sources, 1989, vol. 25, p. 195.

    Article  CAS  Google Scholar 

  7. Kiros, Y., Quatrano, T., and Bjornbom, P., Determination of the thicknesses of the active layer and cathode limiting currents in AFC, Electrochem. Commun., 2004, vol. 6, p. 526.

    Article  CAS  Google Scholar 

  8. Hyodo, T., Miura, N., and Yamazoe, N., Gas diffusion-type oxygen electrode using perovskite-type oxides for metal-air batteries, MRS Proc., 1995, vol. 393, p. 79.

  9. Anastasijevic, N.A., Dimitrijevic, Z.M., and Adzic, R.R., Oxygen reduction on a ruthenium electrode in alkaline electrolytes, J. Electroanal. Chem., 1986, vol. 199, p. 351.

    Article  CAS  Google Scholar 

  10. Bianchi, G., Mazza, F., and Mussini, T., Catalytic decomposition of acid hydrogen peroxide solutions on platinum, iridium, palladium and gold surfaces, Electrochim. Acta, 1962, vol. 7, p. 457.

    Article  CAS  Google Scholar 

  11. Martinovic, J.M., Sepa, D.B., Vojnovic, M.V., et al., Kinetics of electrochemical reduction of oxygen at rhodium, Electrochim. Acta, 1988, vol. 33, p. 1267.

    Article  CAS  Google Scholar 

  12. Sugawara, M., Ohno, M., and Matsuki, K., Novel preparation method of manganese(II) manganese(IV) oxide (Mn2Mn3O8, Mn5O8) by citrate process, Chem. Lett., 1991, vol. 20, no. 8, p. 1465.

    Article  Google Scholar 

  13. Lee, C.K., Striebel, K.A., McLarnon, F.R., and Cairns, E.J., Thermal treatment of La0.6Ca0.4CoO3 perovskites for bifunctional air electrodes, J. Electrochem. Soc., 1997, vol. 144, p. 3801.

    Article  CAS  Google Scholar 

  14. Kiros, Y. and Schwartz, S., Pyrolyzed macrocycles on high surface area carbons for the reduction of oxygen in alkaline fuel cells, J. Power Sources, 1991, vol. 36, p. 547.

    Article  CAS  Google Scholar 

  15. Yang, J. and Xu, J.J., Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions, Electrochem. Commun., 2003, vol. 5, p. 306.

    Article  CAS  Google Scholar 

  16. Weidenkaff, A., Ebbinghaus, S.G., Lippert, T., et al., Phase formation and phase transition of Ln1 –xCaxCoO3 – δ (Ln = La, Er) applied for bifunctional air electrodes, Cryst. Eng., 2002, vol. 5, p. 449.

    Article  CAS  Google Scholar 

  17. Hayashi, M., Uemura, H., Shimanoe, K., et al., Enhanced electrocatalytic activity for oxygen reduction over carbon-supported LaMnO3 prepared by reverse micelle method, Electrochem. Solid State Lett., 1998, vol. 1, no. 6, p. 268.

    Article  CAS  Google Scholar 

  18. Hayashi, M., Uemura, H., and Shimanoe, K., Reverse micelle assisted dispersion of lanthanum manganite on carbon support for oxygen reduction cathode, J. Electrochem. Soc., 2004, vol. 151, p. A158.

    Article  CAS  Google Scholar 

  19. Munnik, P., de Jongh, P.E., and de Jong, K.P., Recent developments in the synthesis of supported catalysts, Chem. Rev., 2015, vol. 115, p. 6687.

    Article  CAS  Google Scholar 

  20. Védrine, J.C., Heterogeneous catalysis on metal oxides, Catalysts, 2017, vol. 7, p. 341.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Yazici.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazici, M.S. LaMnOx Air Diffusion Cathode for Primary Alkali Batteries. Russ J Electrochem 56, 630–637 (2020). https://doi.org/10.1134/S1023193520080078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520080078

Keywords:

Navigation