Skip to main content
Log in

Ground-based microwave temperature profilers: Potential and experimental data

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Calculated (potential) and experimental parameters (accuracy, vertical resolution, and calibration) of ground-based temperature profilers are analyzed. At the moment, single-channel scanning microwave profilers (MTP-5) are widely used for atmospheric boundary layer temperature profile measurements, and multifrequency microwave radiometers (MP-3000A, RPG-HATPRO, and MICRORADCOM) are used for tropospheric temperature profiling. Data of the MICRORADCOM profiler, which operated from January 1, 2014, to January 1, 2015, in Dolgoprudny, Moscow oblast, are considered in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atmosphere: Handbook (Reference Data and Models), Ed. by Yu.S. Sedunov, S.I. Avdyushin, E.P. Borisenkov, O.A. Volkovitskii, N.N. Petrov, R.G. Reitenbakh, V.I. Smirnov, and A.A. Chernikov (Gidrometeoizdat, Leningrad, 1991) [in Russian].

  2. E. N. Kadygrov, “Operational aspects of different ground-based remote sensing observing techniques for vertical profiling of temperature, wind, humidity and cloud structure: A review,” in IOM Report No. 89, WMO/TD No. 1309 (WMO, Geneva, 2006), pp. 1–34.

    Google Scholar 

  3. A. E. Basharinov, A. S. Gurvich, and S. T. Egorov, Radiation of the Earth as a Planet (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  4. E. R. Westwater, “Ground-based passive probing using microwave spectrum of oxygen,” Radio Sci. D 69 (9), 1201–1211 (1965).

    Google Scholar 

  5. M. L. Meeks and A. E. Lilley, “The microwave spectrum of oxygen in the Earth’s atmosphere,” J. Geophys. Res. 68 (6), 1683–1703 (1963).

    Article  ADS  Google Scholar 

  6. J. I. Askne and E. R. Westwater, “A review of groundbased remote sensing of temperature and moisture by passive microwave radiometers,” IEEE Trans. Geosci. Remote Sens., GE-24, 340–348 (1986).

    Google Scholar 

  7. A. V. Troitskii, “Remote determination of atmospheric temperature from spectral radiometric measurements in the γ = 5-mm line,” Radiophys. Quantum Electron. 29 (8), 670–678 (1986).

    Article  ADS  Google Scholar 

  8. A. V. Troitsky, K. P. Gaykovich, E. N. Kadygrov, A. S. Kosov, and V. A. Gromov, “Thermal sounding of the atmosphere boundary layer in oxygen absorption band center,” IEEE Trans. Geosci. Remote Sens. 31 (1), 116–120 (1993).

    Article  ADS  Google Scholar 

  9. E. N. Kadygrov, G. A. Kokin, and A. A. Potapov, “Mmrange instruments for monitoring the Earth’s ozone layer,” Zarubezh. Radioelektron., No. 10, 52–66 (1989).

    Google Scholar 

  10. A. A. Vlasov and E. N. Kadygrov, “Mm-wave thermometry of the middle atmosphere from an aerostat,” Dokl. Akad. Nauk SSSR 4 (313), 831–834 (1989).

    Google Scholar 

  11. A. A. Vlasov, E. N. Kadygrov, and A. A. Potapov, “Limb radio spectrometry of the atmosphere at mm-waves,” Zarubezh. Radioelektron. Uspekhi Sovrem. Radioelektron, No. 3, 56–65 (1997).

    Google Scholar 

  12. W. L. Smith, W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, “The retrieval of planetary boundary layer structure using groundbased infrared spectral radiance measurements,” J. Atmos. Ocean. Technol. 16, 323–333. 1999.

    Article  ADS  Google Scholar 

  13. E. N. Kadygrov, A. G. Gorelik, E. A. Miller, V. V. Nekrasov, A. V. Troitskii, T. A. Tochilkina, and A. N. Shaposhnikov, “Results of tropospheric thermodynamics monitoring on the base of multichannel microwave system data,” Opt. Atmos. Okeana 26 (6), 459–465 (2013).

    Google Scholar 

  14. A. T. Ershov and A. P. Naumov, “Concerning the problem of reconstructing altitude temperature profiles from ground observations of atmospheric radio emission in the γ ~ 5 mm region,” Radiophys. Quantum Electron. 17 (11), 1230–1241 (1974).

    Article  ADS  Google Scholar 

  15. A. N. Tikhonov and V. Ya. Arsenin, Solution of Ill-Posed Problems (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  16. P. W. Rosenkranz, “Interference coefficients for overlapping oxygen lines in air,” J. Quant. Spectrosc. Radiat. Transfer 39, 287–297 (1988).

    Article  ADS  Google Scholar 

  17. N. A. Esepkina, D. V. Korol’kov, and Yu. N. Pariiskii, Radiotelescopy and Radiometry (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  18. E. R. Westwater, Y. Han, V. G. Irisov, V. Leuvskiy, E. N. Kadygrov, and A. S. Viazankin, “Remote sensing of boundary layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: Comparison experiments,” J. Atmos. Ocean. Technol. 16, 805–818 (1999).

    Article  ADS  Google Scholar 

  19. E. N. Kadygrov and D. R. Pick, “The potential for temperature retrieval from an angular-scanning singlechannel microwave radiometer and some comparisons with in situ observations,” Meteorol. Appl. 5 (4), 393–404 (1998).

    Article  ADS  Google Scholar 

  20. E. N. Kadygrov, “Microwave radiometry of atmospheric boundary layer: method, equipment, and applications,” Opt. Atmos. Okeana 22 (7), 697–704 (2009).

    Google Scholar 

  21. E. N. Kadygrov, I. N. Kuznetsova, and G. S. Golitsyn, “Heat island in the boundary air layer over a large city: New results on the basis of remote data,” Dokl. Ross. Akad. Nauk 385 (4), 541–548 (2002).

    Google Scholar 

  22. M. W. Rotach, P. Calanca, G. Graziani, J. Gurtz, D. G. Steyn, R. Vogt, M. Andretta, A. Christen, S. Cieslik, R. Connoly, S. F. J. De Wekker, S. Galmarini, E. N. Kadygrov, V. Kadygrov, E. A. Miller, B. Neininger, M. Rucker, E. V. Gorsel, H. Weber, A. Weiss, and M. Zappa, “Turbulence structure and exchange processes in an Alpine valley: The Riviera Project,” Bull. Amer. Meteorol. Soc. 85 (9), 1367–1385 (2004).

    Article  ADS  Google Scholar 

  23. M. N. Khaikine, I. N. Kuznetsova, E. N. Kadygrov, and E. A. Miller, “Investigation of thermal-spatial parameters of an urban heat island on the basis of passive microwave remote sensing,” Theor. Appl. Climatol. 84 (1–3), 161–169 (2006).

    Article  ADS  Google Scholar 

  24. G. I. Gorchakov, E. N. Kadygrov, A. A. Isakov, A. V. Karpov, and E. A. Miller, “Influence of a solar eclipse on thermal stratification and the turbulence regime,” Dokl. Earth Sci. 417 (1), 1243–1246 (2007).

    Article  ADS  Google Scholar 

  25. I. N. Kuznetsova, E. N. Kadygrov, E. A. Miller, and M. I. Nakhaev, “Characteristics of lowest 600 m atmospheric layer temperature on the basis of MTP-5 profiler data,” Opt. Atmos. Okeana 25 (10), 877–883 (2012).

    Google Scholar 

  26. G. I. Gorchakov, E. N. Kadygrov, V. E. Kunitsyn, V. I. Zakharov, E. G. Semutnikova, A. V. Karpov, G. A. Kurbatov, E. A. Miller, and S. I. Sitanskii, “The Moscow heat island in the blocking anticyclone during summer 2010,” Dokl. Earth Sci. 456 (2), 736–740 (2014).

    Article  ADS  Google Scholar 

  27. S. Argentini, A. Conidi, and E. N. Kadygrov, “Temperature measurements at Dome C using a new microwave temperature profiler,” in Proc. Conf., Italian Physical Society, Ed. By M. Colacino (SIF, Bologna, 2004), vol. 89, pp. 215–227.

    Google Scholar 

  28. M. P. Cadeddu, G. E. Peckham, and C. Gaffard, “The vertical resolution of ground-based microwave radiometers analyzed through a multiresolution wavelet technique,” IEEE Trans. Geosci. Remote Sens. 40 (3), 531–540 (2002).

    Article  ADS  Google Scholar 

  29. Ed. R. Westwater, Y. Han, and F. Solheim, “Resolution and accuracy of a multi-frequency scanning radiometer for temperature profiling,” in Microwave Radiometrics Remote Sensing of Earth Surfing and Atmosphere, Ed. by P. Pampaloni and S. Paloscia (VSP, 2000), pp. 129–135.

    Google Scholar 

  30. F. Solheim, J. R. Godwin, E. R. Westwater, Y. Han, S. J. Keihm, K. Marsh, and R. Ware, “Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods,” Radio Sci. 33, 393–404 (1998).

    Article  ADS  Google Scholar 

  31. S. Crewell, “Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry,” IEEE Trans. Geosci. Remote Sens. 45 (7), 2195–2301 (2007).

    Article  ADS  Google Scholar 

  32. C. D. Rodgers, “The vertical resolution of remotely sounded temperature profiles with a priori statistics,” J. Atmos. Sci. 33, 707–709 (1986).

    Article  ADS  Google Scholar 

  33. G. E. Backus and J. F. Gilbert, “Uniqueness in the inversion of inaccurate gross Earth data,” Philos. Trans. Roy. Soc. London A 266, 123–192 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  34. E. N. Kadygrov, E. V. Gan’shin, A. G. Gorelik, A.K. Knyazev, E. A. Miller, V. V. Nekrasov, T. A. Tochilkina, and A. N. Shaposhnikov, “Experimental estimate of the efficiency of a multichannel microwave radiometric complex for monitoring the thermodynamic state of the troposphere and studying the mesostructure parameters of clouds,” in Abstracts of the 21st Working Group “Siberian Aerosol” (Publishing House of IAO SB RAS, Tomsk, 2014), p. 71 [in Russian].

    Google Scholar 

  35. N. A. Zaitsev, Yu. M. Timofeev, and V. S. Kostsov, “Comparison of radio sounding and ground-based remote measurements of temperature profiles in the troposphere,” Atmos. Ocean. Opt. 27 (5), 386–392 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Kadygrov.

Additional information

Original Russian Text © E.N. Kadygrov, E.V. Ganshin, E.A. Miller, T.A. Tochilkina, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadygrov, E.N., Ganshin, E.V., Miller, E.A. et al. Ground-based microwave temperature profilers: Potential and experimental data. Atmos Ocean Opt 28, 598–605 (2015). https://doi.org/10.1134/S102485601506007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601506007X

Keywords

Navigation