Skip to main content
Log in

Damage and fracture: Review of experimental studies

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This paper is a part of a review of recent (last 15 years) publications on experimental and theoretical methods and approaches for studying damage accumulation and fracture in crystalline solids. The first part of the review is devoted to the experimental studies that examine the physical mechanisms of microdamage nucleation and growth under various thermomechanical loads, physical and mechanical properties of materials, and the issues concerning the formation and growth of main cracks and transition to macrofracture. Particular attention is given to the studies of fatigue failure of various metals and alloys, particularly the features of micro- and macrodamage nucleation and growth in structures and specimens at different loading cycle parameters, and the effect of grain size, solid phase inclusions, grain boundaries, twins, etc. on damage evolution. A whole variety of modern approaches to the experimental study (including in situ studies) of specimen structure and stress-strain state is shown. Disadvantages of current experimental studies on damage and fracture are discussed, such as insufficient attention to the scale factor and determination of the representative volume for fracture analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Czichos, H., Physics of Failure, Handbook of Technical Diagnostics, Czichos, H., Ed., Berlin-Heidelberg: Springer-Verlag, 2013, pp. 23–40.

    Chapter  Google Scholar 

  2. Needleman, A. and van der Giessen, E., Micromechanics of Fracture: Connecting Physics to Engineering, MRS Bulletin, 2001, pp. 211–214.

    Google Scholar 

  3. Sangid, M.D., The Physics of Fatigue Crack Initiation, Int. J. Fatigue, 2013, vol. 57, pp. 58–72.

    Article  Google Scholar 

  4. McDowell, D.L. and Dunne, F.P.E., Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation, Int. J. Fatigue, 2010, vol. 32, pp. 1521–1542.

    Article  Google Scholar 

  5. Fracture: An Advanced Treatise, Vol. 1: Microscopic and Macroscopic Fundamentals, Liebowitz, H., Ed., New York: Academic Press, 1968.

  6. Fracture: An Advanced Treatise, Vol. 2: MathematicalFundamentals, Liebowitz, H., Ed., New York: Academic Press, 1968.

  7. Fracture: An Advanced Treatise, Vol. 3: Engineering Fundamentals and Environmental Effects, Liebowitz, H., Ed., New York: Academic Press, 1971.

  8. Fracture: An Advanced Treatise, Vol. 4: Engineering Fracture Design, Liebowitz, H., Ed., New York: Academic Press, 1969.

  9. Fracture: An Advanced Treatise, Vol. 5: Fracture Design of Structures, Liebowitz, H., Ed., New York: Academic Press, 1969.

  10. Fracture: An Advanced Treatise, Vol. 6: Fracture of Metals, Liebowitz, H., Ed., New York: Academic Press, 1969.

  11. Fracture: An Advanced Treatise, Vol. 7: Fracture of Nonmetals and Composites, Liebowitz, H., Ed., Academic Press, 1972.

  12. Collins, J.A., Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention, New York: Wiley, 1993.

    Google Scholar 

  13. Botvina, L.R., Fracture: Kinetics, Mechanisms, General Laws, Moscow: Nauka, 2008.

    Google Scholar 

  14. Structural Levels of Plastic Deformation and Fracture, Panin, V.E., Ed., Novosibirsk: Nauka, 1990.

  15. Kuznetsov, P.V. and Panin, V.E., Direct Observation of Flows of Defects and of nm-Range Localization of Deformation on Duralumin Surface with the Aid of Scanning Tunnel and Atom Force Microscopes, Phys. Mesomech., 2000, vol. 3, no. 2, pp. 85–91.

    Google Scholar 

  16. Toyooka, S., Widiastuti, R., Zhang, Q., and Kato, H., Dynamic Observation of Localized Strain Pulsation Generated in the Plastic Deformation Process by Electronic Speckle Pattern Interferometry, Jpn. J. Appl. Phys., 2001, no. 40, pp. 873–876.

    Article  ADS  Google Scholar 

  17. Yoshida, S. and Toyooka, S., Field Theoretical Interpretation on Dynamics of Plastic Deformation, J. Phys. Condens. Matter, 2001, vol. 13, pp. 6741-6757.

    Article  ADS  Google Scholar 

  18. Panin, VE. and Egorushkin, VE., Nonequilibrium Thermodynamics of a Deformed Solid as a Multiscale System. Corpuscular-Wave Dualism of Plastic Shear, Phys. Mesomech., 2008, vol. 11, no. 3–4, pp. 105–123.

    Article  Google Scholar 

  19. Panin, V.E., Egorushkin, V.E., and Panin, A.V., Nonlinear Wave Processes in a Deformable Solid as in a Multiscale Hierarchically Organized System, Physics Uspekhi, 2012, vol. 55, no. 4, pp. 1260–1267.

    Article  ADS  Google Scholar 

  20. Markushev, M.V., On Fracture and Crack Resistance of Severely Deformed Aluminium Alloys with Micro- and Submicrocrystalline Structures, Vopr. Materialoved., 2007, no. 4(52), pp. 217–223.

    Google Scholar 

  21. Weiland, H., Nardiello, J., Zaefferer, S., Cheong, S., Papazian, J., and Raabe, D., Microstructural Aspects of Crack Nucleation during Cyclic Loading of AA7075-T651, Eng. Fract. Mech., 2009, vol. 76, pp. 709–714.

    Article  Google Scholar 

  22. Simar, A., Nielsen, K.L., de Meester, B., Tvergaard, V, and Pardoen, T., Micro-Mechanical Modelling of Ductile Failure in 6005A Aluminium Using a Physics Based Strain Hardening Law Including Stage IV, Eng. Fract. Mech., 2010, vol. 77, pp. 2491–2503.

    Article  Google Scholar 

  23. Gurson, A.L., Continuum Theory of Ductile Rupture by Void Nucleation and Growth. I. Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 1977, vol. 99, pp. 2–15.

    Article  Google Scholar 

  24. Carroll, J.D., Abuzaid, W.Z., Lambros, J., and Sehitoglu, H., On the Interactions between Strain Accumulation, Microstructure, and Fatigue Crack Behavior, Int. J. Fracture, 2013, vol. 180, pp. 223–241.

    Article  Google Scholar 

  25. Tasan, C.C., Hoefnagels, J.P.M., Diehl, M., Yan, D., Roters, F., and Raabe, D., Strain Localization and Damage in Dual Phase Steels Investigated by Coupled In-Situ Deformation Experiments and Crystal Plasticity Simulations, Int. J. Plasticity, 2014, vol. 63, pp. 198–210.

    Article  Google Scholar 

  26. Trusov, P.V. and Shveykin, A.I., Multilevel Crystal Plasticity Models of Single- and Polycrystals. Statistical Models, Phys. Mesomech., 2013, vol. 16, no. 1, pp. 23–33.

    Article  Google Scholar 

  27. Trusov, P.V. and Shveykin, A.I., Multilevel Crystal Plasticity Models of Single- and Polycrystals. Direct Models, Phys. Mesomech., 2013, vol. 16, no. 2, pp. 99–124.

    Article  Google Scholar 

  28. Dronov, V.S. and Repkov, M.Yu., Fatigue Damage Accumulation and Crack Growth in High-Strength Carbon Steel under Unsteady Loading Conditions, Izv. TulGU. Tekhn. Nauki, 2013, no. 7(1), pp. 226–235.

    Google Scholar 

  29. Kogaev, V.P, Makhutov, N.A., and Gusenkov, A.P., Strength and Durability Analysis of Machine Parts and Structures: A Handbook, Moscow: Mashinostroeniye, 1985.

    Google Scholar 

  30. Botkin, A.V., Valiev, R.Z., Dubinina, S.V., Raab, G.I., and Stepin, P.S., Metal Failure Prediction during Severe Plastic Deformation of Cylinder in Equal Channel Angular Pressing, VestnikMGTU Nosova, 2011, no. 4, pp. 38–42.

    Google Scholar 

  31. Bogatov, A.A., Mechanical Properties and Failure Models of Metals: A Guide for Students, Ekaterinburg: UGTUUPI, 2002.

    Google Scholar 

  32. Botkin, A.V., Valiev, R.Z., Stepin, P.S., and Baimukhametov, A.Kh., Evaluating the Metal Damage during Cold Plastic Deformation Using the Cockroft-Latham Fracture Model, Deform. Razrush. Mater., 2011, no. 7, pp. 17–22.

    Google Scholar 

  33. Cockcroft, M.G. and Latham, D.J., Ductility and Workability of Metals, J. Inst. Metals, 1968, vol. 96, pp. 33–39.

    Google Scholar 

  34. Lapovok, R., Damage Evolution under Severe Plastic Deformation, Int. J. Fract., 2002, vol. 115, pp. 159–172.

    Article  Google Scholar 

  35. Lapovok, R., Smirnov, S., and Shveykin, V., Damage Mechanics for the Fracture Prediction of Metal Forming Tools, Int. J. Fract., 2000, vol. 103, pp. 111–126.

    Article  Google Scholar 

  36. Kachanov, L.M., Foundations of Fracture Mechanics, Moscow: Nauka, 1974.

    Google Scholar 

  37. Margolin, B.Z., Belyaeva, L.A., Balakin, S.M., Buchatskii, A.A., and Potapova, V.A., An Experimental-Computational Study of Thermal Fatigue Fracture Resistance of Austenitic Steels Subjected to Neutron Irradiation, Vopr. Materialoved., 2008, no. 4, pp. 94–105.

    Google Scholar 

  38. Margolin, B.Z., Fomenko, V.N., Gulenko A.G., Shvetsova, VA., Nikolaev, V.A., Morozov, A.M., Vakulenko, A. A., Piminov, V.A., and Shulgan, N.A., Prediction of Calculated Temperature Dependence of Fracture Toughness for Peactor Pressure Vessel Materials Based on Pesults of Surveillance Specimen Testing, Vopr. Materialoved., 2008, no. 3, pp. 111–124.

    Google Scholar 

  39. Margolin, B., Shvetsova, V., and Gulenko, A., Padiation Embrittlement Modelling in Multi-Scale Approach to Brittle Fracture of PPV Steels, Int. J. Fract., 2013, vol. 179, no. 1-2, pp. 87–108.

    Article  Google Scholar 

  40. Kotkunde, N., Krishnamurthy, H.N., Puranik, P., Gupta, A.K., and Singh, S.K., Microstructure Study and Constitutive Modeling of Ti-6Al-4V Alloy at Elevated Temperatures, Mater. Design, 2014, vol. 54, pp. 96–103.

    Article  Google Scholar 

  41. Nani Babu, M., Sasikala, G., Shashank Dutt, B., Venugopal, S., Albert, S.K., Bhaduri, A.K., and Jayakumar, T., Investigation on Influence of Dynamic Strain Ageing on Fatigue Crack Growth Behaviour of Modified 9Cr-1Mo Steel, Int. J. Fatigue, 2012, vol. 43, pp. 242–245.

    Article  Google Scholar 

  42. Hellan, K., Introduction to Fracture Mechanics, McGraw-Hill, 1985.

    Google Scholar 

  43. Schijve, J., The Application of Small Overloads for Fractography of Small Fatigue Cracks Initiated under Constant-Amplitude Loading, Int. J. Fatigue, 2015, vol. 70, pp. 63–72.

    Article  Google Scholar 

  44. Kamaya, M., Low-Cycle Fatigue Crack Growth Prediction by Strain Intensity Factor, Int. J. Fatigue, 2015, vol. 72, pp. 80–89.

    Article  Google Scholar 

  45. Tang, X.S. and Wei, T.T., Microscopic Inhomogeneity Coupled with Macroscopic Homogeneity: A Localized Zone of Energy Density for Fatigue Crack Growth, Int. J. Fatigue, 2015, vol. 70, pp. 270–277.

    Article  Google Scholar 

  46. Taheri, S., Vincent, L., and Le-Poux, J.-C., Classification of Metallic Alloys for Fatigue Damage Accumulation: A Conservative Model under Strain Control for 304 Stainless Steels, Int. J. Fatigue, 2015, vol. 70, pp. 73–84.

    Article  Google Scholar 

  47. Safonov, I.V., Tretyakov, M.P., and Vildeman, V.E., Experimental Study of Fatigue Life of Aluminum Alloy in Tension with Torsion, Vestnik PNIPU. Mekhanika, 2013, no. 2, pp. 124–132.

    Google Scholar 

  48. Ghammouri, M., Abbadi, M., Mendez, J., Belouettar, S., and Zenasni, M., An approach in Plastic Strain-Controlled Cumulative Fatigue Damage, Int. J. Fatigue, 2011, vol. 33, pp. 265–272.

    Article  Google Scholar 

  49. Saeidi, N., Ashrafizadeh, F., Niroumand, B., Forouzan, M.P., and Barlat, F., Damage Mechanism and Modeling of Void Nucleation Process in a Ferrite-Martensite Dual Phase Steel, Eng. Fract. Mech., 2014, vol. 127, pp. 97–103.

    Article  Google Scholar 

  50. Cao, T.-S., Bobadilla, C., Montmitonnet, P., and Bouchard, P.-O., A Comparative Study of Three Ductile Damage Approaches for Fracture Prediction in Cold Forming Processes, J. Mater. Process. Tech., 2015, vol. 216, pp. 385–404.

    Article  Google Scholar 

  51. Cao, T.-S., Vachey, C., Montmitonnet, P., and Bouchard, P.O., Comparison of Reduction Ability between Multi-Stage Cold Drawing and Polling of Stainless Steel Wire—Experimental and Numerical Investigations of Damage, J. Mater. Process. Tech., 2015, vol. 217, pp. 30–47.

    Article  Google Scholar 

  52. Bai. Y. and Wierzbicki, T., A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence, Int. J. Plasticity, 2008, vol. 24(6), pp. 1071–1096.

    Article  MATH  Google Scholar 

  53. Lemaitre, J., Local Approach of Fracture, Eng. Fract. Mech., 1986, vol. 25(5-6), pp. 523–537.

    Article  Google Scholar 

  54. Xue, L., Damage Accumulation and Fracture Initiation in Uncracked Ductile Solids subject to Triaxial Loading, Int. J. Solids Struct., 2007, vol. 44(16), pp. 5163–5181.

    Article  MATH  Google Scholar 

  55. Tvergaard, V. and Needleman, A., Analysis of the Cup-Cone Fracture in a Pound Tensile Bar, Acta Metall., 1984, vol. 32(1), pp. 157–169.

    Article  Google Scholar 

  56. Kotousov, A. and Chang, D., Theoretical and Experimental Study of Fatigue Growth of Interacting Cracks, Int. J. Fatigue, 2015, vol. 70, pp. 130–136.

    Article  Google Scholar 

  57. Chai, G., Damage Mechanism of Low Cycle Fatigue in an Advanced Heat Pesistant Austenitic Stainless Steel at High Temperature, Proc. Mater. Sci., 2014, vol. 3, pp. 1754–1759.

    Article  Google Scholar 

  58. Liakat, M. and Khonsari, M.M., An Experimental Approach to Estimate Damage and Pemaining Life of Metals under Uniaxial Fatigue Loading, Mater. Design, 2014, vol. 57, pp. 289–297.

    Article  Google Scholar 

  59. Sirinakorn, T., Wongwises, S., and Uthaisangsuk, V, A Study of Local Deformation and Damage of Dual Phase Steel, Mater. Design, 2014, vol. 64, pp. 729–742.

    Article  Google Scholar 

  60. Ma, N., Takada, K., and Sato, K., Measurement of Local Strain Path and Identification of Ductile Damage Limit Based on Simple Tensile Test, Procedia Eng., 2014, vol. 81, pp. 1402–1407.

    Article  Google Scholar 

  61. Dzenis, Y.A., Cycle-Based Analysis of Damage and Failure in Advanced Composites under Fatigue. 1. Experimental Observation of Damage Development within Loading Cycles, Int. J. Fatigue, 2003, vol. 25, pp. 499–510.

    Article  Google Scholar 

  62. Shilova, A.I., Wildemann, V.E., Lobanov, D.S., and Lyamin, Y.B., Pesearching Mechanisms of Carbon Composites Fracture Based on the Mechanical Tests Monitoring Acoustic Emission, Vestnik PNIPU. Mekhanika, 2013, no. 4, pp. 169–179.

    Google Scholar 

  63. Shilova, A.I., Lobanov, D.S., Wildemann, V.E., and Lyamin, Y.B., Experimental Study of the Effect of Fabric High Temperature Treatment on the Composite Strength Properties, Vestnik PNIPU. Mekhanika, 2014, no. 4, pp. 221–239.

    Google Scholar 

  64. Anoshkin, A.N., Pospelov, A.B., and Iakushev, P.M., Features of Low-Temperature Deformation and Fracture of Combined Plastic Pipes, Vestnik PNIPU. Mekhanika, 2014, no. 2, pp. 5–28.

    Google Scholar 

  65. Ince, A. and Glinka, G., A Generalized Fatigue Damage Parameter for Multiaxial Fatigue Life Prediction under Proportional and Non-Proportional Loadings, Int. J. Fatigue, 2014, vol. 62, pp. 34–41.

    Article  Google Scholar 

  66. Jahed, H. and Varhani-Farahani, A., Upper and Lower Fatigue Limits Model Using Energy-Based Fatigue Properties, Int. J. Fatigue, 2006, vol. 28, pp. 467–73.

    Article  MATH  Google Scholar 

  67. Glinka, G., Shen, G., and Plumtree, A., Mean Stress Effects in Multiaxial Fatigue, Fatigue Eng. Mater. Struct., 1995, vol. 18, pp. 755–764.

    Article  Google Scholar 

  68. Danilov, V.I., Eroshenko, A.Yu., Sharkeev, Yu.P., Orlova, D.V., and Zuev, L.B. Peculiarities of Deformation and Fracture of Ultrafine-Grained Ti- and Zr-Based Alloys, Fiz. Mezomekh., 2014, vol. 17, no. 4, pp. 77–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Trusov.

Additional information

Original Russian Text © P.S. Volegov, D.S. Gribov, P.V. Trusov, 2015, published in Fizicheskaya Mezomekhanika, 2015, Vol. 18, No. 3, pp. 11-24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volegov, P.S., Gribov, D.S. & Trusov, P.V. Damage and fracture: Review of experimental studies. Phys Mesomech 19, 319–331 (2016). https://doi.org/10.1134/S1029959916030103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959916030103

Keywords

Navigation