Skip to main content
Log in

Intracenter Raman silicon lasers

  • Semiconductor Lasers
  • Published:
Laser Physics

Abstract

Raman-type Stokes stimulated emission in the far-infrared wavelength range (52–65 μm) has been realized in silicon crystals doped by group-V hydrogen-like donor centers at low temperatures under optical excitation by radiation from a pulsed frequency-tunable infrared free-electron laser. The light scattering appears as an entire intracenter process and occurs on the donor electronic transitions being resonant to the intervalley transverse acoustic g phonon. The outgoing and incoming electronic donor resonances amplify the efficiency of scattering, so that the Raman optical gain increases to the values observed for the infrared room temperature Raman silicon lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pavesi, Routes Toward Silicon-Based Lasers, Mater. Today 1, 18 (2005).

    Article  Google Scholar 

  2. M. J. Chen, J. L. Yen, J. Y. Li, et al., Appl. Phys. Lett. 84, 2163 (2004).

    Article  ADS  Google Scholar 

  3. S. G. Clouter, P. A. Kossyrev, and J. Xu, Nature Mater. 4, 887 (2005).

    Article  ADS  Google Scholar 

  4. Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, Nature (London) 378, 258 (1995).

    Article  ADS  Google Scholar 

  5. G. Dehlinger, L. Diehl, U. Gennser, et al., Science 290, 2277 (2000).

    Article  Google Scholar 

  6. J. Zhang, X. B. Li, J. H. Neave, et al., J. Crystal Growth 278, 488 (2005).

    Article  Google Scholar 

  7. S. G. Pavlov, R. Kh. Zhukavin, E. E. Orlova, et al., Phys. Rev. Lett. 22, 5220 (2000).

    Article  ADS  Google Scholar 

  8. A. Polman, B. Min, J. Kalkman, et al., Appl. Phys. Lett. 84, 1037 (2004).

    Article  ADS  Google Scholar 

  9. S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman, Appl. Phys. Lett. 89, 171908 (2006).

    Google Scholar 

  10. O. Boyaraz and B. Jalali, Opt. Express 12, 5269 (2004).

    Article  ADS  Google Scholar 

  11. H. Rong, A. Liu, R. Jones, et al., Nature 433, 292 (2005); H. Rong, R. Jones, A. Liu, et al., Nature 433, 725 (2005).

    Article  ADS  Google Scholar 

  12. S. G. Pavlov, H.-W. Hübers, H. Riemann, et al., J. Appl. Phys. 92, 5632 (2002).

    Article  ADS  Google Scholar 

  13. V. N. Shastin, R. Kh. Zhukavin, E. E. Orlova, et al., Appl. Phys. Lett. 80, 3512 (2002).

    Article  ADS  Google Scholar 

  14. S. G. Pavlov, H.-W. Hübers, M. H. Rümmeli, et al., Appl. Phys. Lett. 80, 4717 (2002).

    Article  ADS  Google Scholar 

  15. H.-W. Hübers, S. G. Pavlov, R. Kh. Zhukavin, et al., Appl. Phys. Lett. 84, 3600 (2004).

    Article  ADS  Google Scholar 

  16. S. G. Pavlov, H.-W. Hubers, J. N. Hovenier, et al., Phys. Rev. Lett. 96, 037404 (2006).

    Google Scholar 

  17. A. K. Ramdas and S. Rodriguez, Rep. Prog. Phys. 44, 1297 (1981).

    Article  ADS  Google Scholar 

  18. M. Asche and O. G. Sarbei, Phys. Status Solidi B 103, 11 (1981), and references therein.

    Article  Google Scholar 

  19. T. G. Castner, Jr., Phys. Rev. 130, 58 (1963).

    Article  ADS  Google Scholar 

  20. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, 3rd ed. (Springer, Berlin, 2005), p. 394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlov, S.G. Intracenter Raman silicon lasers. Laser Phys. 17, 1037–1040 (2007). https://doi.org/10.1134/S1054660X07080038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07080038

PACS numbers

Navigation