Skip to main content
Log in

Molecular dynamics simulation of pressure isotherms for nanofluids

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Pressure isotherms have been constructed by the molecular dynamics method for nanofluids based on argon and zinc, aluminum, and lithium nanoparticles. Nanoparticle volume concentration is varied from 1 to 10%. Nanoparticles have sizes of 1 or 2 nm. The equation of state has been shown to essentially depend on the volume concentration, size, and material of the particles. Depending on the density of a carrier fluid, the pressure of a nanofluid (at a preset density) may be either higher or lower than the pressure of the basic fluid. On the other hand, the partial pressure of a pseudogas of nanoparticles decreases rapidly with an increase in their sizes (inversely proportional to the cubed particle radius).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rudyak, V.Ya., Adv. Nanoparticles, 2013, vol. 2, p. 266.

    Article  Google Scholar 

  2. Rudyak, V.Ya., Dimov, S.V., Kuznetsov, V.V., and Bardakhanov, S.P., Doklady Physics, 2013, vol. 58, no. 5, p. 173.

    Article  CAS  Google Scholar 

  3. Rudyak, V.Ya., Vestn. Novosib. Gos. Univ., Ser. Fiz., 2015, vol. 10, no. 1, p. 5.

    Google Scholar 

  4. Rudyak, V.Ya. and Krasnolutskii, S.L., Phys. Lett. A, 2014, vol. 378, p. 1845.

    Article  CAS  Google Scholar 

  5. Timofeeva, E.V., Smith, D.S., Yu, W., France, D.M., Singh, D., and Routbort, J.L., Nanotechnology, 2010, vol. 21, p. 215703.

    Article  Google Scholar 

  6. Kumar, P.M., Kumar, J., Tamilarasan, R., Sendhilnathan, S., and Suresh, S., Eng. J., 2015, vol. 19, no. 1, p. 67.

    Article  CAS  Google Scholar 

  7. Minakov, A.V., Rudyak, V.Ya., Guzei, D.V., and Lobasov, A.S., High Temperature, 2015, vol. 53, p. 246.

    Article  CAS  Google Scholar 

  8. Minakov, A.V., Lobasov, A.S., Guzei, D.V., Pryazhnikov, M.I., and Rudyak, V.Ya., Appl. Therm. Eng., 2015, vol. 88, p. 140.

    Article  CAS  Google Scholar 

  9. Minakov, A.V., Lobasov, A.S., Rudyak, V.Ya., Guzei, D.V., and Pryazhnikov, M.I., Technical Physics Letters, 2014, vol. 40, no. 7, p. 582.

    Article  Google Scholar 

  10. Rudyak, V.Ya. and Belkin, A.A., J. Experimental and Theoretical Phys., 1999, vol. 89, p. 1086.

    Article  Google Scholar 

  11. Rudyak, V.Ya. and Krasnolutskii, S.L., Abstracts of Papers, 21st Int. Symp. on Rarefied Gas Dynamics, Toulouse: Cépadués-Éditions, 1999, vol. 1, p. 263.

    Google Scholar 

  12. Rudyak, V.Ya. and Krasnolutskii, S.L., Doklady Physics, 2001, vol. 46, p. 897.

    Article  Google Scholar 

  13. Rudyak, V.Ya., Statisticheskaya aerogidromekhanika gomogennykh i geterogennykh sred. T. 1. Kineticheskaya teoriya (Statistical Aerohydromechanics of Homogeneous and Heterogeneous Media. Vol. 1. Kinetic Theory), Novosibirsk: NGASU, 2004.

    Google Scholar 

  14. Rudyak, V.Ya., Krasnolutskii, S.L., and Ivanov, D.A., Doklady Physics, 2012, vol. 57, p. 33.

    Article  CAS  Google Scholar 

  15. Hamaker, H.C., Physica A (Amsterdam), 1937, vol. 4, p. 1058.

    Article  CAS  Google Scholar 

  16. Lifshits, E.M., Dzyaloshinskii, I.E., and Pitaevskii, L.P., Usp. Fiz. Nauk, 1961, vol. 73, p. 381.

    Article  Google Scholar 

  17. Hirschfelder, J.O., Curtiss, C.F., and Bird, R., Molecular Theory of Gases and Liquids, New York Wiley, 1954.

    Google Scholar 

  18. Aref’ev, K.M., Yavleniya perenosa v gaze i plazme (Transfer Phenomena in Gas and Plasma), Leningrad Energoatomizdat, 1983.

    Google Scholar 

  19. Heinz, H., Vaia, R.A., Farmer, B.L., and Naik, R.R., J. Phys. Chem. C, 2008, vol. 112, p. 17281.

    Article  CAS  Google Scholar 

  20. Rudyak, V.Ya., Krasnolutskii, S.L., and Ivanov, D.A., Microfluid Nanofluid, 2011, vol. 11, p. 501.

    Article  CAS  Google Scholar 

  21. Rudyak, V.Ya. and Krasnolutskii, S.L., Technical Physics, 2015, vol. 60, no. 6, p. 798.

    Article  CAS  Google Scholar 

  22. Zubarev, D.N., Neravnovesnaya statisticheskaya termodinamika (Nonequilibrium Statistical Thermodynamics), Moscow Nauka, 1971.

    Google Scholar 

  23. Norman, G.E. and Stegailov, V.V., Mat. Model., 2012, vol. 24, no. 6, p. 3.

    Google Scholar 

  24. Rudyak, V.Ya., Statisticheskaya aerogidromekhanika gomogennykh i geterogennykh sred. T. 2. Gidromekhanika (Statistical Aerohydromechanics of Homogeneous and Heterogeneous Media. Vol. 2. Hydromechanics), Novosibirsk: NGASU, 2005.

    Google Scholar 

  25. Rudyak, V.Ya. and Ivanov, D.A., Dokl. Akad. Nauk VSh Rossii, 2003, no. 1, p. 30.

    Google Scholar 

  26. Adamenko, I.I., Bulavin, L.A., Moroz, K.O., Prylutskyy, Yu.I., and Scharff, P., J. Mol. Liq., 2003, vol. 105, p. 149.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Rudyak.

Additional information

Original Russian Text © V.Ya. Rudyak, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 2, pp. 187–192.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudyak, V.Y. Molecular dynamics simulation of pressure isotherms for nanofluids. Colloid J 78, 204–209 (2016). https://doi.org/10.1134/S1061933X16020113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16020113

Keywords

Navigation